System Bits: March 3


Observing antiferromagnetic order in ultracold atoms Rice University researchers have simulated superconducting materials and made headway on a problem that’s vexed physicists for nearly three decades using ultracold atoms as a stand-in for electrons. The research team, led by Rice, included researchers from Ohio State University, Universidade Federal do Rio de Janeiro, University of Cal... » read more

System Bits: Feb. 3


A viable silicon substitute A new study by UC Berkeley, the University of Pennsylvania and the University of Illinois at Urbana-Champaign (UIUC) moves graphene a step closer to knocking silicon off as the dominant workhorse of the electronics industry. They reminded that while silicon is ubiquitous in semiconductors and integrated circuits, researchers have been eyeing graphene, a one-atom... » read more

System Bits: Jan. 27


Optimizing algorithms Optimization algorithms try to find the minimum values of mathematical functions, and are everywhere in engineering for such things as evaluating design tradeoffs, assessing control systems, finding patterns in data, among other things. A way to solve a difficult optimization problem is to first reduce it to a related but much simpler problem, then gradually add complexit... » read more

Power/Performance Bits: Jan. 20


Boosting silicon solar cells According to Stanford researchers, stacking crystalline perovskites onto a conventional silicon solar cell dramatically improves the overall efficiency of the cell. The researchers reminded that silicon solar cells dominate the world market, but the power conversion efficiency of silicon photovoltaics has been stuck at 25 percent for 15 years. One inexpensive wa... » read more

System Bits: Dec. 23


Mini particle accelerator Researchers at MIT who succeeded last year in creating a material that could trap light and stop it in its tracks have now developed a more fundamental understanding of the process. The new work — which they said could help explain some basic physical mechanisms — shows that this behavior is connected to a wide range of other seemingly unrelated phenomena. Ligh... » read more

Power/Performance Bits: Sept. 16


Phosphorus: a promising semiconductor According to researchers at Rice University, defects damage the ideal properties of many 2D materials, like carbon-based graphene, but phosphorus just shrugs, making it a promising candidate for nano-electronic applications that require stable properties. The team analyzed the properties of elemental bonds between semiconducting phosphorus atoms in 2D s... » read more

System Bits: Aug. 19


Revealing the purity of graphene Graphene may be tough, but those who handle it had better be tender, according to researchers from Rice University and Osaka University who have come up with a simple way to spot contaminants given that the environment surrounding the atom-thick carbon material can influence its electronic performance. It is so easy to accidentally introduce impurities into ... » read more

System Bits: August 5


A better conductor There are now new clues about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide, according to a Rice University-led team of U.S., German and Chinese physicists that has discovered, based on sophisticated neutron measurements, of a link between magnetic properties and the material’s tendency, at sufficien... » read more

System Bits: July 22


All graphene is not the same Widely touted as the most electrically conductive material ever studied, researchers at the University of Pennsylvania now understand that all graphene is not the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function. The team has used an advanced microscope to study the relationship be... » read more

System Bits: July 15


Silicon oxide memories Thanks to a refinement that will allow manufacturers to fabricate devices at room temperature with conventional production methods, Rice University’s silicon oxide technology for high-density, next-generation computer memory is one step closer to mass production. Rice’s silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) ... » read more

← Older posts Newer posts →