Monitoring IC Abnormalities Before Failures


The rising complexities of semiconductor processes and design are driving an increasing use of on-chip monitors to support data analytics from an IC’s birth through its end of life — no matter how long that projected lifespan. Engineers have long used on-chip circuitry to assist with manufacturing test, silicon debug and failure analysis. Providing visibility and controllability of inter... » read more

Using Fab Sensors To Reduce Auto Defects


The semiconductor manufacturing ecosystem has begun collaborating on ways to effectively use wafer data to meet the stringent quality and reliability requirements for automotive ICs. Silicon manufacturing companies are now leveraging equipment and inspection monitors to proactively identify impactful defects prior to electrical test. Using machine learning techniques, they combine the monitor ... » read more

Sensing Automotive IC Failures


The sooner you detect a failure in any electronic system, the sooner you can act. Together, data analytics and on-chip sensors are poised to boost quality in auto chips and add a growing level of predictive maintenance for vehicles. The ballooning number of chips cars makes it difficult to reach 10 defective parts per billion for every IC that goes into a car.  And requiring that for a 15-y... » read more

Customized On-Chip Process Monitors


The sensitivity of digital circuits to process variations is continuously increasing with scaling in MOSFET devices. The effect of process variations has a substantial impact on the power, performance, and reliability of products. These process variations can be local or across the chip or wafer-to-wafer, or even lot-to-lot. These process variations need to be observed and analyzed in order to ... » read more