Power/Performance Bits: Sept. 11


Non-toxic photoluminescent nanoparticles Researchers from Osaka University developed a way to improve display technologies using non-toxic light-emitting nanoparticles. In trying to replace cadmium and other toxic materials used in quantum dots, scientists have turned to non-toxic nanoparticles that emit light in an efficient manner by creating I–III–VI semiconductors, such as silver in... » read more

Power/Performance Bits: Aug. 21


Physical neural network Engineers at UCLA built a physical artificial neural network capable of identifying objects as light passes through a series of 3D printed polymer layers. Called a "diffractive deep neural network," it uses the light bouncing from the object itself to identify that object, a process that consumes no energy and is faster than traditional computer-based methods of imag... » read more

Power/Performance Bits: Aug. 7


Optical neural network Researchers at the National Institute of Standards and Technology (NIST) have made a silicon chip that distributes optical signals precisely across a miniature brain-like grid, showcasing a potential new design for neural networks. Using light would eliminate interference due to electrical charge and the signals would travel faster and farther, said the researchers. "... » read more

Power/Performance Bits: July 31


Training optical neural networks Researchers from Stanford University used an optical chip to train an artificial neural network, a step that could lead to faster, more efficient AI tasks. Although optical neural networks have been recently demonstrated, the training step was performed using a model on a traditional digital computer and the final settings were then imported into the optical... » read more

Power/Performance Bits: July 16


Bacterial solar Researchers at the University of British Columbia developed a solar cell that uses bacteria to convert light to energy. The cell worked as efficiently in dim light as in bright light, making solar a potential option in areas of the world that frequently have overcast skies. Called biogenic cells, they work by utilizing the natural dye that bacteria use for photosynthesis. Pr... » read more

Power/Performance Bits: June 19


Tandem solar reaches 25.2% efficiency In the push for ever-more efficient solar panels, researchers are turning to tandem, or double-junction, photovoltaics. Tandem solar panels use two different types of solar cell capable of absorbing different wavelengths of light stacked on top of each other to maximize the conversion of light rays into electrical power. Recently, two groups have reache... » read more

Power/Performance Bits: June 12


AI for solar materials In the search for better organic photovoltaic materials, researchers at Osaka University turned to machine learning to help identify candidates. While organic photovoltaics (OPVs) are promising on a cost basis, they do not yet have the required power conversion efficiency (PCE) necessary for commercialization. A key element in this is the semiconducting polymer layer. ... » read more

Power/Performance Bits: May 15


Aluminum battery materials Scientists from ETH Zurich and Empa identified two new materials that could boost the development of aluminum batteries, a potential low cost, materially abundant option for temporary storage of renewable energy. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that ... » read more

Power/Performance Bits: May 8


Cobalt-free cathodes Researchers at the University of California, Berkeley, built lithium-ion battery cathodes without cobalt that can store 50% more energy than traditional cobalt-containing cathodes. Currently, lithium-ion battery cathodes use layered structures, which cobalt is necessary to maintain. When lithium ions move from the cathode to anode during charging, a lot of space is left... » read more

Power/Performance Bits: May 1


Low power video streaming Engineers at the University of Washington developed a method for streaming HD video from a lightweight, wearable camera. The researchers used backscatter to send pixel data to a more powerful device, such as a smartphone or laptop, for power-hungry tasks like video processing and compression that have made a lightweight streaming camera out of reach. The pixels in ... » read more

← Older posts Newer posts →