Solving Thermal Coupling Issues In Complex Chips


Rising chip and packaging complexity is causing a proportionate increase in thermal couplings, which can reduce performance, shorten the lifespan of chips, and impact overall reliability of chips and systems. Thermal coupling is essentially a junction between two devices, such as a chip and a package, or a transistor and a substrate, in which heat is transferred from one to the other. If not... » read more

Electro-Thermal Signoff For Next Gen 3DICs


Multi-die designs, 2.5D and 3D, have been rising in popularity as they offer tremendously increased levels of integration, a smaller footprint, performance gains and more. While they are attractive for many applications, they also create design bottlenecks in the areas of thermal management and power delivery. For 3DICs, in addition to the complex SoC/PCB interactions seen in their 2D counterpa... » read more

The Evolving Thermal Landscape


Managing heat in chips is becoming a precision balancing act at advanced nodes and with advanced packaging. While it's important to ensure that temperatures don't rise high enough to cause reliability problems, adding too much circuitry to control heat can reduce performance and lower energy efficiency. The most common approach to dealing with these issues is thermal simulation, which requir... » read more

Thermal Is Still Simmering


With the ever increasing sophistication in today’s high-performance [getkc id="81" kc_name="SoC"]s on top of sheer physics of device manufacturing, thermal is a much bigger concern than ever before. It is well understood that thermal and power are closely related, and there exists a vicious cycle between leakage power and temperature: leakage goes up, temperature goes up; temperature goes ... » read more