Atomic Layer Etch Finally Emerges


The migration towards finFETs and other devices at the 20nm node and beyond will require a new array of chip-manufacturing technologies. Multiple patterning, hybrid metrology and newfangled interconnect schemes are just a few of the technologies required for future scaling. In addition, the industry also will require new techniques that can process structures at the atomic level. For example... » read more

System Bits: May 6


Nonlinear optical resonance The drive to develop ultrasmall and ultrafast electronic devices using a single atomic layer of semiconductors, such as transition metal dichalcogenides, has received a significant boost. Researchers with Berkeley Lab have recorded the first observations of a strong nonlinear optical resonance along the edges of a single layer of molybdenum disulfide. The existence ... » read more

Manufacturing Bits: Jan. 14


MoS2 FETs Two-dimensional materials are gaining steam in the R&D labs. The 2D materials include graphene, boron nitride (BN) and the transition-metal dichalcogenides (TMDs). One TMD, molybdenum diselenide (MoS2), is an attractive material for use in future field-effect transistors (FETs). MoS2 has several properties, including a non-zero band gap, atomic scale thickness and pristine int... » read more

Manufacturing Bits: Jan. 7


Climbing Terminator Robots Simon Fraser University has developed a family of climbing robots that mimic the stickiness of gecko lizard feet. Based on a “footpad terminator” adhesive technology, the robots could be used in space missions and on Earth. The climbing robot, called Abigaille, features six legs. This allows the robots to crawl on vertical and horizontal structures. The techno... » read more

Newer posts →