Chipmakers Look To New Materials


Graphene, the wonder material rediscovered in 2004, and a host of other two-dimensional materials are gaining ground in manufacturing semiconductors as silicon’s usefulness begins to fade. And while there are a number of compounds in use already, such as gallium arsenide, gallium nitride, and silicon carbide, those materials generally are being confined to specific niche applications. Tran... » read more

Power/Performance Bits: Dec. 5


Solar jet fuel Researchers at ETH Zurich demonstrated the ability to use solar energy to create the precursor to jet fuel from water and carbon dioxide, a process that could lead to carbon-neutral air travel. The scientists performed 295 consecutive cycles in a 4 kW solar reactor, yielding 700 standard liters of hydrogen and carbon monoxide (syngas), the precursor to kerosene and other liqu... » read more

System Bits: Oct. 3


Polariton graphs In a development that a team of researchers from the UK and Russia say could eventually surpass the capabilities of even the most powerful supercomputers, a type of ‘magic dust’ — which combines light and matter — can be used to solve complex problems. Hailing from the University of Cambridge, University of Southampton and Cardiff University in the UK and the Skolk... » read more

Power/Performance Bits: Sept. 19


Healing perovskites A team from the University of Cambridge, MIT, University of Oxford, University of Bath, and Delft University of Technology discovered a way to heal defects in perovskite solar cells by exposing them to light and just the right amount of humidity. While perovskites show promise for low-cost, efficient photovoltaics, tiny defects in the crystalline structure, called traps,... » read more

System Bits: July 11


An algorithm to diagnose heart arrhythmias with cardiologist-level accuracy To speed diagnosis and improve treatment for people in rural locations, Stanford University researchers have developed a deep learning algorithm can diagnose 14 types of heart rhythm defects better than cardiologists. The algorithm can sift through hours of heart rhythm data generated by some wearable monitors to f... » read more

System Bits: Jan. 24


Modified carbon nanotubes used to track individual cells Carbon nanotubes come to the forefront of scientific research yet again, this time for serving as the most sensitive molecular sensing platforms available. MIT engineers believe they have designed sensors that, for the first time, can detect single protein molecules as they are secreted by cells or even a single cell. The sensors that... » read more

Manufacturing Bits: Nov. 15


Tiny magnifying glass The University of Cambridge has devised what researchers claim is the world’s smallest magnifying glass. More specifically, researchers developed a tiny optical cavity, dubbed a pico-cavity. The pico-cavity consists of self-assembled, biphenyl-4-thiol molecules. These materials are sandwiched between gold nanostructures the size of a single atom. With the pico-cav... » read more

Power/Performance Bits: Oct. 25


Energy-harvesting floor Engineers at the University of Wisconsin-Madison developed a flooring material which can be used as a triboelectric nanogenerator to convert footsteps into electricity. The method uses wood pulp, a common waste material already often used in flooring. The pulp is partly make of cellulose nanofibers, which when chemically treated produce an electrical charge when th... » read more

System Bits: Oct. 11


Carbon Is So 2015 Researchers at MIT have created a supercapacitor that relies on a material other than carbon. This new class of materials, called metal-organic frameworks (MOFs), are a porous and sponge-like, according to MIT, tthereby providing a much larger surface area than carbon. As with most things electrical, more surface area is essential for superconductors. The problem the re... » read more

System Bits: Sept. 20


Improving Torque Sensing In an advance that could bring new types of sensors and studies in quantum mechanics, Purdue University researchers have levitated a tiny nanodiamond particle with a laser in a vacuum chamber, using the technique for the first time to detect and measure its torsional vibration. The team said the experiment represents a nanoscale version of the torsion balance used i... » read more

← Older posts Newer posts →