Security Risks In The Supply Chain


Semiconductor Engineering sat down to discuss security in the supply chain with Warren Savage, research scientist in the Applied Research Laboratory for Intelligence and Security at the University of Maryland; Neeraj Paliwal, vice president and general manager of Rambus Security; Luis Ancajas, marketing director for IoT security software solutions at Micron; Doug Suerich, product evangelist at ... » read more

New Security Risks Create Need For Stealthy Chips


Semiconductors are becoming more vulnerable to attacks at each new process node due to thinner materials used to make these devices, as well as advances in equipment used to simulate how those chips behave. Thinner chips are now emitting light, electromagnetic radiation and various other types of noise, which can be observed using infrared and acoustic sensors. In addition, more powerful too... » read more

System Bits: Sept. 11


Everything’s faster in Texas The Frontera supercomputing system was formally unveiled last week at the Texas Advanced Computing Center. The system was deployed in June on the University of Texas at Austin campus. It is the fifth-fastest supercomputer in the world at present and the world's fastest academic supercomputer. Dell EMC and Intel collaborated on fitting out Frontera. Work beg... » read more

System Bits: Aug. 20


Blockchain integrated into energy systems Researchers at Canada’s University of Waterloo integrated blockchain technology into energy systems, a development that may expand charging infrastructure for electric vehicles. In a study that outlines the new blockchain-oriented charging system, the researchers found that there is a lack of trust among charging service providers, property owners... » read more

Week in Review: IoT, Security, Auto


Products/Services Mentor, a Siemens Business, announced the release of the final phase of the Valor software New Product Introduction design-for-manufacturing technology, automating printed circuit board design reviews. The company has integrated DFM technology into the Xpedition software layout application. Arteris IP reports that Toshiba has taped out its next-generation advanced driv... » read more

System Bits: May 21


Washable, wearable energy devices for clothing Researchers at the University of Cambridge collaborated with colleagues at China’s Jiangnan University to develop wearable electronic components that could be woven into fabrics for clothing, suitable for energy conversion, flexible circuits, health-care monitoring, and other applications. Graphene and other materials can be directly incorpor... » read more

Week in Review: IoT, Security, Auto


Internet of Things AT&T reports the activation of its narrowband Internet of Things network in the U.S. The carrier upgraded its 4G LTE cell sites across the country. It now offers two low-power wide-area networks to business customers, including its LTE-M network in Mexico and the U.S. “Both networks are designed for the IoT within licensed spectrum and provide carrier-grade security,�... » read more

Power/Performance Bits: April 30


Printed supercapacitors Researchers at Drexel University and Trinity College created ink for an inkjet printer from MXene, a highly conductive two-dimensional material, which could be used to print flexible energy storage components, such as supercapacitors, in any size or shape. The material shows promise as an ink thanks to its high conductivity and ability to apply easily to surfaces usi... » read more

Power/Performance Bits: April 8


Predicting battery life Researchers at Stanford University, MIT, and Toyota Research Institute developed a machine learning model that can predict how long a lithium-ion battery can be expected to perform. The researchers' model was trained on a few hundred million data points of batteries charging and discharging. The dataset consists of 124 commercial lithium iron phosphate/graphite cells... » read more

Power/Performance Bits: July 3


Graphene foam devices Scientists at Rice University developed a method for building conductive, three-dimensional objects out of graphene foam, which they say could offer new possibilities for energy storage and flexible electronic sensor applications. The same lab initially created laser-induced graphene, or LIG, in 2014. The process involves heating inexpensive polyimide plastic sheets wi... » read more

← Older posts Newer posts →