Power/Performance Bits: June 23


Capturing waste heat Researchers at Wuhan University and University of California Los Angeles developed a hydrogel that can both cool down electronics and convert the waste heat into electricity. The thermogalvanic hydrogel consists of a polyacrylamide framework infused with water and specific ions. When they heated the hydrogel, two of the ions (ferricyanide and ferrocyanide) transferred e... » read more

Power/Performance Bits: Dec. 9


Solar capture and storage Researchers at the University of Houston developed a device capable of both capturing and storing solar energy. Unlike solar panels and solar cells, which rely on photovoltaic technology for the direct generation of electricity, the hybrid device captures heat from the sun and stores it as thermal energy. The device combines molecular energy storage and latent heat... » read more

Power/Performance Bits: Nov. 25


Rigid or flexible in one device Researchers at the Korea Advanced Institute of Science and Technology (KAIST), Electronics and Telecommunications Research Institute (ETRI) in Daejeon, University of Colorado Boulder, Washington University in St. Louis, Cornell University, and Georgia Institute of Technology proposed a system that would allow electronics to transform from stiff devices to flexib... » read more

Power/Performance Bits: Nov. 5


Conductive yarn Researchers at Drexel University created an electrically conductive coating for yarn that withstands wearing, washing, and industrial textile manufacturing. Rather than using metallic fibers, the coating is made up of different sized flakes of the two-dimensional material MXene, which was applied to standard cellulose-based yarns. Titanium carbide MXene can be produced in f... » read more

Power/Performance Bits: Oct. 9


Topological insulator waveguides Engineers at the University of Pennsylvania and Polytechnic University of Milan applied topological insulators to photonic chips to make reconfigurable waveguides. In topological insulators, charged particles can flow freely on the material's edges but can't pass through the interior. For photonics, topological insulators with edges that could be redefined m... » read more

Power/Performance Bits: Oct. 1


Nighttime power Researchers at UCLA and Stanford University created a low-cost device that harnesses radiative cooling to provide a small amount of renewable energy at night. While the device only provides a small amount of power, it could be useful for areas without reliable electricity or access to batteries. Radiative cooling happens when a surface that faces the sky emits heat as therma... » read more

Power/Performance Bits: Sept. 24


Textiles for energy storage Scientists at RMIT University developed a way to laser print waterproof textiles with graphene supercapacitors for embedded energy storage. The process takes three minutes to create a 10x10cm patch. The electronic textile is based on nylon coated with PDMS on one side for waterproofing. The other side was paint coated with graphene oxide and a binder to form thin... » read more

Power/Performance Bits: Sept. 11


Thread transistor Researchers at Tufts University developed a thread-based transistor that can be fashioned into simple, all-thread based logic circuits and integrated circuits which could be woven into fabric or worn on the skin, or even surgically implanted. The thread-based transistor (TBT) is made of a linen thread coated with carbon nanotubes, creating a semiconductor surface. Two thin... » read more

Week in Review: IoT, Security, Auto


Products/Services Rambus agreed to acquire Hillsboro, Ore.-based Northwest Logic, a purveyor of memory, PCIe, and MIPI digital controllers. The transaction is expected to close in the current quarter. Financial terms weren’t disclosed; Rambus said in a statement, “Although this transaction will not materially impact 2019 results due to the expected timing of close and acquisition accountin... » read more

Power/Performance Bits: July 30


100GHz transceiver Engineers at the University of California Irvine built a new wireless transceiver that works above 100 gigahertz. The 4.4-millimeter-square silicon chip, called an "end-to-end transmitter-receiver," uses a digital-analog architecture that modulates the digital bits in the analog and radio-frequency domains to process digital signals quickly and energy-efficiently. "We cal... » read more

← Older posts Newer posts →