Home
TECHNICAL PAPERS

A Hybrid ECO Detailed Placement Flow for Mitigating Dynamic IR Drop (UC San Diego)

popularity

A new technical paper titled “A Hybrid ECO Detailed Placement Flow for Improved Reduction of Dynamic IR Drop” was published by researchers at UC San Diego.

Abstract:

“With advanced semiconductor technology progressing well into sub-7nm scale, voltage drop has become an increasingly challenging issue. As a result, there has been extensive research focused on predicting and mitigating dynamic IR drops, leading to the development of IR drop engineering change order (ECO) flows – often integrated with modern commercial EDA tools. However, these tools encounter QoR limitations while mitigating IR drop. To address this, we propose a hybrid ECO detailed placement approach that is integrated with existing commercial EDA flows, to mitigate excessive peak current demands within power and ground rails. Our proposed hybrid approach effectively optimizes peak current levels within a specified “clip”– complementing and enhancing commercial EDA dynamic IR-driven ECO detailed placements. In particular, we: (i) order instances in a netlist in decreasing order of worst voltage drop; (ii) extract a clip around each instance; and (iii) solve an integer linear programming (ILP) problem to optimize instance placements. Our approach optimizes dynamic voltage drops (DVD) across ten designs by up to 15.3% compared to original conventional flows, with similar timing quality and 55.1% less runtime.”

Find the technical paper here. Published June 2024.

Andrew B. Kahng, Bodhisatta Pramanik, and Mingyu Woo. 2024. A Hybrid ECO Detailed Placement Flow for Improved Reduction of Dynamic IR Drop. In Proceedings of the Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24). Association for Computing Machinery, New York, NY, USA, 390–396. https://doi.org/10.1145/3649476.3658727.



Leave a Reply


(Note: This name will be displayed publicly)