Bottlenecks For Edge Processors


New processor architectures are being developed that can provide two to three orders of magnitude improvement in performance. The question now is whether the performance in systems will be anything close to the processor benchmarks. Most of these processors doing one thing very well. They handle specific data types and can accelerate the multiply-accumulate functions for algorithms by distri... » read more

The Growing Uncertainty Of Sign-Off At 7/5nm


Having enough confidence in designs to sign off prior to manufacturing is becoming far more difficult at 7/5nm. It is taking longer due to increasing transistor density, thinner gate oxides, and many more power-related operations that can disrupt signal integrity and impact reliability.  For many years, designers have performed design rule checks as part of physical verification of the desi... » read more

Driving AI, ML To New Levels On MCUs


One of the most dramatic impacts of technology of late has been the implementation of artificial intelligence and machine learning on small edge devices, the likes of which are forming the backbone of the Internet of Things. At first, this happened through sheer engineering willpower and innovation. But as the drive towards a world of a trillion connected devices accelerates, we must find wa... » read more

ASIC/IC Trends With A Focus On Factors Of Silicon Success


“The more you know, the more you know you don't know.” ― Aristotle, 4th C. BC When Aristotle uttered this humble aphorism, he wasn’t telling us to throw up our hands and not bother with learning. He was encouraging us to continue digging deeper, to get answers and ask questions of those answers — that the thrills and rewards of study are truly without end. This is a big part of ou... » read more

The Limits Of Energy Harvesting


Energy harvesting, once considered an inexpensive alternative to low-power design and a way of achieving nearly unlimited power in mobile devices, has settled down to more modest expectations. This approach to generating energy through a variety of means—from solar to motion to ambient RF and even pH differences between soil and trees—has been proven to work. The problem is that it doesn... » read more

Engineering The Signal For GDDR6


DDR1 through DDR3 had their challenges, but speeds were below one gigabit and signal integrity (SI) challenges were more centered around static timing and running pseudo random binary sequence (PRBS) simulations. Now, with GDDR6, we are working on 16 to 20 gigabits per second (Gbps) signaling and even faster in the near future. As a result, engineering the signal for GDDR6 will require careful ... » read more

Raising The Abstraction Level For Power


Power-aware design is still a relatively new concern for many semiconductor products, and since inception it has changed several times and in different ways. Initially people were concerned about peak power. Today, they care about peak, total energy, thermal and other effects. The industry has tried several abstractions ranging from system-level analysis, which promised to swamp implementati... » read more

Latency Under Load: HBM2 vs. GDDR6


Steven Woo, Rambus fellow and distinguished inventor, explains why data traffic and bandwidth are critical to choosing the type of DRAM, options for improving traffic flow in different memory types, and how this works with multiple memory types.   Related Video GDDR6 - HBM2 Tradeoffs Why designers choose one memory type over another. Applications for each were clearly delineate... » read more

The Rising Importance Of Design Planning


Design Planning is often overlooked in the chip design flow. The front-end designer carefully architects the design functionality to produce golden RTL. This is then poured into the synthesis engine to produce logic gates. The synthesized netlist is then thrown over the wall by the front-end designer for physical implementation. The back-end designer receives a gate-level netlist, timing con... » read more

Selecting A Portable Stimulus Application Focal Point


The "axes of reuse" are a powerful way to identify a focal point for your application of Portable Stimulus. Picking a focal point helps to identify needed resources and identify the gap between what is needed and what already exists in your organization. Picking an initial focal point for applying Portable Stimulus doesn’t preclude expanding the application of Portable Stimulus in the future.... » read more

← Older posts Newer posts →