An Expanding Application Space For GDDR6 Memory


The origins of graphics double data rate (GDDR) memory can be traced to the rise of 3D gaming on PCs and consoles. The first GPUs used single data rate (SDR) and double data rate (DDR) DRAM, the same memory used for CPU main memory. The quest for higher frame rates at higher resolutions drove the need for a graphics-workload specific memory solution. The commercial success of gaming PCs and con... » read more

Data Center Scaling Requires New Interface Architectures


You can pick your favorite data points, but the bottom line is global data traffic is growing at an exponential rate driven by a confluence of megatrends. 5G networks are making possible billions of AI-powered IoT devices untethered from wired networks. Machine learning’s voracious appetite for enormous data sets is skyrocketing. Data intensive video streaming for both entertainment and busin... » read more

Enabling Chiplet And Co-Packaged Optics Architectures With 112G XSR SerDes


Conventional chip designs are struggling to achieve the scalability, as well as power, performance, and area (PPA), that are demanded of leading-edge designs. With the slowing of Moore’s Law, high complexity ASICs increasingly bump up against reticle limits. The demise of Dennard scaling means power consumption is a growing challenge. In this context, disaggregated architectures such as chipl... » read more

2.5D Architecture Answers AI Training’s Call for “All of the Above”


The impact of AI/ML grows daily impacting every industry and touching the lives of everyone. In marketing, healthcare, retail, transportation, manufacturing and more, AI/ML is a catalyst for great change. This rapid advance is powerfully illustrated by the growth in AI/ML training capabilities which have since 2012 grown by a factor of 10X every year. Today, AI/ML neural network training mod... » read more

HBM2E Memory: A Perfect Fit For AI/ML Training


Artificial Intelligence/Machine Learning (AI/ML) growth proceeds at a lightning pace. In the past eight years, AI training capabilities have jumped by a factor of 300,000 (10X annually), driving rapid improvements in every aspect of computing hardware and software. Memory bandwidth is one such critical area of focus enabling the continued growth of AI. Introduced in 2013, High Bandwidth Memo... » read more

Enabling Integration Success Using High-Speed SerDes IP


By Niall Sorensen and Malini Narayanammoorthi Internet traffic volumes continue to grow at a breakneck pace, and the demands on SerDes speeds increase accordingly. High-speed SerDes play an integral part of the networking chain and these speed increases are required to support the bandwidth demands of artificial intelligence (AI), Internet of Things (IoT), virtual reality (VR) and many more ... » read more

Accelerating AI And ML Applications With PCIe 5


The rapid adoption of sophisticated artificial intelligence/machine learning (AI/ML) applications and the shift to cloud-based workloads has significantly increased network traffic in recent years. Historically, the intensive use of virtualization ensured that server compute capacity adequately met the need of heavy workloads. This was achieved by dividing or partitioning a single (physical) se... » read more

GDDR6 Pushes The Memory Envelope For AI And ADAS


Memory bandwidth is an ever-increasing critical bottleneck for a wide range of use cases and applications. These include artificial intelligence (AI), machine learning (ML), advanced driver-assistance systems (ADAS), as well as 5G wireless and wireline infrastructure. In addition to memory bottlenecks, the above-mentioned use cases and applications are rapidly hitting the real-world limits of t... » read more

Accelerating Chiplets With 112G XSR SerDes PHYs


The fading of Moore’s Law and an almost exponential increase in data is challenging the semiconductor industry as never before. Indeed, zettabytes of data are constantly generated by a wide range of devices including IoT endpoints such as vehicles, wearables, smartphones and appliances. Moreover, sophisticated artificial intelligence (AI) and machine learning (ML) applications are adding new ... » read more

Breaking Down The AI Memory Wall


Over the past few decades, the semiconductor industry has witnessed the rapid evolution of memory technology as new memories helped to usher in new usage models that characterized each decade. For example, synchronous memory helped drive the personal computer (PC) revolution in the 1990s, and this was quickly followed by specialized graphics memory (GPUs) for game consoles in the 2000s. When sm... » read more

← Older posts