Save Power And Area By Eliminating Redundant Resets


Resets initialize hardware by forcing it into a known state, either on design start up or to recover from an error. In today’s SoC designs, it is not uncommon to see designs with millions of registers that have resets. Unfortunately, many of these resets are redundant. Leaving these unnecessary register resets in the design leads to increased power consumption, excess area, and routing conges... » read more

An Introduction To Reducing Dynamic Power


In the past few blogs we have been primarily talking about UPF and applying the Successive Refinement process to save power. But, this process addresses leakage power. In this session we want to talk about how to save dynamic power. As designs move to finFET technology, dynamic power is the dominant contributor to power consumption. Power consumption trend. I recently sat down with my c... » read more

Power Analysis Plus Power Management


In my earlier blogs we've heard from some of the experts on using UPF in the successive refinement flow. We’ve talked about controlling leakage power, bringing power down, and validating power management behavior using coverage and simulation, including debug and clock domain crossing verification. In order to do the last step in the successive refinement flow, you need to use emulation be... » read more

Automating Coverage And Analysis Of Low Power Designs


There are some exciting new things in the just released IEEE1801-2015 (aka UPF 3.0), some of which have significant benefits for coverage of low power designs, which is what we’ll be looking at in this blog. One of these is improved semantics for the add power state command, introduced in IEEE1801-2009 (aka UPF 2.0). These clarifications to the add power state command allow you to clearly ... » read more

Micro-Architectural Exploration for Low Power Design


In the first part of this series, we had discussed the need to perform power optimizations and exploration at higher levels of abstractions where the potential to reduce the power consumption is highest. We presented the need for making coarser changes at higher level of abstractions to exploit full power saving potential. In the second part, we discussed some very potent micro-architectural te... » read more

Micro-Architectural Exploration For Low Power Design


By Abhishek Ranjan, Saurabh Shrimal and Sanjiv Narayan In the first part of this series, we discussed the need to perform power optimizations and exploration at higher levels of abstractions, where the potential to reduce the power consumption was highest. While fine-grained local changes (like clock-gating, operand isolation, etc.) for power reduction are well understood and widely adopted,... » read more

Micro-Architectural Exploration For Low Power Design


By Abishek Ranjan, Saurabh Shrimal and Sanjiv Narayan The adoption of finFET technology has created a tectonic shift in the chip design landscape. In addition to better performance (within the same power envelope) and higher reliability, finFETs have significantly reduced the leakage power at smaller technology nodes. At the same time, the share of dynamic power dissipation continues to rise... » read more

Raising The IQ Of Your MEMS-Based IC Design Flow


By Nicolas Williams and Qi Jing Internet of Things (IoT) applications depend on smart objects that interact with the real world. So your IoT project is likely to contain ICs that integrate micro electro-mechanical systems (MEMS), such as accelerometers, pressure sensors, motors, and microphones that acquire data for analysis. These projects are finding their way into automobiles, phones, and... » read more

How To Speed Up Networking Design Verification


The enormous growth of the Internet of things (IoT) has an enormous impact on network providers. After all, without the underlying network infrastructure, there would be no IoT. One consequence has been a significant increase in the number of Ethernet ports on networking devices. Today, Ethernet switches and routers reach 256 ports (by year’s end that number will increase to 1024 ports), a... » read more

How To Fix Common Power Problems


As the industry moves to ever more advanced technology nodes, managing power has emerged as a primary challenge in modern SoC design. With smaller nodes, the wires become taller and narrower, which increases the resistivity and leads to more pronounced voltage drop effects. Electro-migration effects are also more severe at advanced nodes, causing serious reliability concerns. Both RTL synthesis... » read more

← Older posts Newer posts →