Power/Performance Bits: Dec. 29


Safer Li-ion batteries Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory propose a way to make lithium-ion batteries lighter, more efficient, and fire resistant. One of the heaviest components of lithium-ion batteries are the copper or aluminum sheets that act as current collectors. "The current collector has always been considered de... » read more

Power/Performance Bits: Dec. 23


Detecting early damage in power electronics Researchers at Osaka University to detect early damage in power electronics. The team used acoustic emission analysis to monitor in real time the propagation of cracks in a silicon carbide Schottsky diode during power cycling tests. During the power cycling test, the researchers mimicked repeatedly turning the device on and off, to monitor the res... » read more

10X Faster Electromagnetic 3D Simulation


Virtual prototypes are essential to optimize the signal integrity performance of their high-performance electronics products. Today, engineering teams are pushing to get fast electromagnetic (EM) simulations of printed circuit boards (PCB) and 3D chip packages in just a few hours with the highest level of accuracy. The state of the art in EM simulation has come a long way: Back in 2000 it wa... » read more

Power/Performance Bits: Dec. 15


Graphite films for cooling electronics Researchers at King Abdullah University of Science and Technology (KAUST) developed a way to make a carbon material well suited to dissipating heat in electronic devices. Graphite films are frequently used for heat management. "However, the method used to make these graphite films, using polymer as a source material, is complex and very energy intensiv... » read more

Power Models For Machine Learning


AI and machine learning are being designed into just about everything, but the chip industry lacks sufficient tools to gauge how much power and energy an algorithm is using when it runs on a particular hardware platform. The missing information is a serious limiter for energy-sensitive devices. As the old maxim goes, you can't optimize what you can't measure. Today, the focus is on functiona... » read more

Fast, Low-Power Inferencing


Power and performance are often thought of as opposing goals, opposite sides of the same coin if you will. A system can be run really fast, but it will burn a lot of power. Ease up on the accelerator and power consumption goes down, but so does performance. Optimizing for both power and performance is challenging. Inferencing algorithms for Convolutional Neural Networks (CNN) are compute int... » read more

What Designers Need to Know About Error Correction Code (ECC) In DDR Memories


As with any electronic system, errors in the memory subsystem are possible due to design failures/defects or electrical noise in any one of the components. These errors are classified as either hard-errors (caused by design failures) or soft-errors (caused by system noise or memory array bit flips due to alpha particles, etc.). To handle these memory errors during runtime, the memory subsyst... » read more

Re-Architecting SerDes


Serializer/Deserializer (SerDes) circuits have been helping semiconductors move data around for years, but new process technologies are forcing it to adapt and change in unexpected ways. Traditionally implemented as an analog circuit, SerDes technology has been difficult to scale, while low voltages, variation, and noise are making it more difficult to yield sufficiently. So to remain releva... » read more

Functional Safety For Fail-Operational Systems


Functional safety issues have long been an important part of product development wherever machine operations that are potentially dangerous for humans are carried out unattended. However, in terms of electrical and electronic systems, the need has been limited to a few industries such as medical technology and aerospace. Apart from that, the functional safety concepts were only used for niche p... » read more

Low Power Still Leads, But Energy Emerges As Future Focus


In 2021 and beyond, chips used in smartphones, digital appliances, and nearly all major applications will need to go on a diet. As the amount of data being generated continues to swell, more processors are being added everywhere to sift through that data to determine what's useful, what isn't, and how to distribute it. All of that uses power, and not all of it is being done as efficiently as... » read more

← Older posts Newer posts →