How Die Dimensions Challenge Assembly Processes


Multi-die assemblies are becoming more common and more complex due to technology advancements and market demands, but differing die dimensions are making this process increasingly challenging. To fully enable a multi-chiplet ecosystem, standardized component handling and interfaces are needed. The underlying concept is similar to LEGO blocks that simply snap together, yet it's nowhere near t... » read more

New Materials Are in High Demand


Materials suppliers are responding to the intense pressures to improve power, performance, scaling, and cost issues, which follows a long timeline from synthesis to development and high volume manufacturing in fabs. The advances in machine learning help present a wide field of candidates, which engineers then narrow to potential use. When building standard logic semiconductor chips, the prim... » read more

Managing EMI in High-Density Integration


The relentless drive for higher performance and increased functional integration has ushered in new challenges for managing electromagnetic interference (EMI) in densely packed mixed-signal environments. Integrating analog, RF, and digital circuits into a single system-on-chip (SoC) or advanced package requires solutions that reduce system size and improve performance. However, this tight in... » read more

Smart Manufacturing, Smart Data-AI, And Future Of Computing


By Melissa Grupen-Shemansky, Pushkar Apte, and Mark da Silva Use of machine learning and artificial intelligence (ML/AI) is on an exponential rise across fields1 including all aspects of the semiconductor industry. In the last decade, the use of ML/AI exploded in the areas of speech recognition, facial recognition, smart phone features, search engines and now large language models like Chat... » read more

3.5D: The Great Compromise


The semiconductor industry is converging on 3.5D as the next best option in advanced packaging, a hybrid approach that includes stacking logic chiplets and bonding them separately to a substrate shared by other components. This assembly model satisfies the need for big increases in performance while sidestepping some of the thorniest issues in heterogeneous integration. It establishes a midd... » read more

Increasing Roles For Robotics In Fabs


Different types of robots with greater precision and mobility are beginning to be deployed in semiconductor manufacturing, where they are proving both reliable and cost-efficient. Static robots have been used for years inside of fabs, but they now are being supplemented by collaborative robots (cobots), autonomous mobile robots (AMRs), and autonomous humanoid robots to meet growing and widen... » read more

Current Characterization Of Various Cu RDL Designs In Wafer Level Packages (WLP)


Copper (Cu) redistribution layer (RDL) technology is used to interconnect chips in various high current Wafer Level Packaging (WLP) applications. Typically, Cu RDLs with thicknesses of 5-9 µm and widths of 5-20 µm are used for high current sourcing. In this case, the temperature of the Cu RDL metal line increases due to the Joule heat generated when current passes through the metal line. If a... » read more

Bringing Curvilinear Data To Mask Data Prep


Advanced nodes that have been leveraging curvilinear correction with technologies such as ILT and curvilinear OPC are increasingly requiring the use of curvilinear masks to meet advanced feature size and pitch requirements. However, building curvilinear masks with standard OASIS file formats can come at the cost of large file sizes, increased turnaround time, and reduced quality of results. The... » read more

Building Smarter, Better Fabs


Battling labor shortages, faster ramp rates, and data overload, the process of designing and building greenfield fabs requires a combination of tech tools, failing earlier approaches and superior planning from day one. The complexity and scale of semiconductor fabs is skyrocketing as is the capital cost. Chipmakers are looking to ramp multibillion dollar fabs faster despite the hurdles of la... » read more

Improving Parasitic Capacitance In Next-Generation DRAM Devices


As conventional DRAM devices continue to shrink, increases in parasitic capacitance at smaller dimensions can negatively impact device performance. New DRAM structures may be needed in the future, to lower total capacitance and achieve acceptable device performance. In this study, we compare the parasitic capacitance of a 6F2 honeycomb dynamic random-access memory (DRAM) device to the parasitic... » read more

← Older posts Newer posts →