Power/Performance Bits: Oct. 20


Benchmarking quantum layout synthesis Computer scientists at the University of California Los Angeles found that current compilers for quantum computers are inhibiting optimal performance and argue that better quantum compilation design could help improve computation speeds up to 45 times. The team designed a family of benchmark quantum circuits with known optimal depths or sizes, which cou... » read more

Power/Performance Bits: Oct. 12


More stable quantum states Researchers at the University of Chicago found a way to make quantum systems retain coherency 10,000 times longer. The fragile nature of quantum states remains a challenge for developing practical applications of quantum computing, as they can be easily disrupted by background noise coming from vibrations, temperature changes or stray electromagnetic fields. Ap... » read more

Power/Performance Bits: Oct. 6


Waste plastic supercapacitor Researchers from the University of California Riverside found a way to recycle waste plastic into energy storage devices. The work focused on polyethylene terephthalate plastic waste, or PET, which is found in soda bottles and many other consumer products. The researchers first dissolved pieces of PET plastic bottles in a solvent. Using electrospinning, they fab... » read more

Power/Performance Bits: Sept. 29


Implantable transmitter Researchers from Purdue University developed a fully implantable, wirelessly powered 2.4GHz radio-frequency transmitter chip for wireless sensor nodes and biomedical devices. The team says the transmitter chip consumes the lowest amount of energy per digital bit published to date, consuming an active-mode power of 70 μW at 10 Mbps while radiating -33 dBm of power, r... » read more

Power/Performance Bits: Sept. 22


Drawing sensors on skin Researchers from the University of Houston and University of Chicago created an ink pen that can draw multifunctional sensors and circuits directly on skin. These "drawn-on-skin electronics" aim to provide more precise health data, free of the artifacts that are associated with wearable devices and flexible electronic patches. Caused when the sensor doesn't move prec... » read more

Power/Performance Bits: Sept. 15


Higher-res lidar Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) devised a way to improve lidar and provide higher-resolution detection of nearby fast-moving objects through mechanical control and modulation of light on a silicon chip. "Frequency modulated continuous wave" (FMCW) lidar detects objects by scanning laser light from the top of a vehicl... » read more

Power/Performance Bits: Sept. 9


Smaller, cheaper integrated photonics Researchers from the University of California Santa Barbara, California Institute of Technology (Caltech), and Ecole Polytechnique Fédérale de Lausanne (EPFL) developed a way to integrate an optical frequency comb on a silicon photonic chip. Optical frequency combs are collections of equally spaced frequencies of laser light (so called because when pl... » read more

Power/Performance Bits: Sept. 1


Cooling sensors with lasers Researchers at the University of Washington developed a way to cool a solid semiconductor sensor component with an infrared laser. The laser was able to cool the solid semiconductor by at least 20 degrees C, or 36 F, below room temperature. The device uses a cantilever, similar to a diving board, that can oscillate in response to thermal energy at room temperatur... » read more

Power/Performance Bits: Aug. 25


AI architecture optimization Researchers at Rice University, Stanford University, University of California Santa Barbara, and Texas A&M University proposed two complementary methods for optimizing data-centric processing. The first, called TIMELY, is an architecture developed for “processing-in-memory” (PIM). A promising PIM platform is resistive random access memory, or ReRAM. Whil... » read more

Power/Performance Bits: Aug. 18


Flexible, hole-filled films Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Hongik University propose a simple way to make flexible electrodes and thin film transistors last longer: adding lots of tiny holes. A major problem with flexible electronics is the formation of microscopic cracks after repeated bending which can cause the device to lose its conducti... » read more

← Older posts