Power/Performance Bits: March 27


Equalizing batteries Engineers at the University of Toledo propose a bilevel equalizer technology to improve the life span of batteries by combining the high performance of an active equalizer with the low cost of a passive equalizer. "Whenever we are talking about batteries, we are talking about cells connected in a series. Over time, the battery is not balanced and limited by the weakest ... » read more

Power/Performance Bits: Mar. 20


Proton battery prototype A team at RMIT University built a prototype rechargeable proton battery combining hydrogen fuel cells and battery-based electrical power that has the potential, with further development, to store more energy than currently-available lithium ion batteries. The working prototype proton battery uses an activated carbon electrode for solid-state storage of hydrogen with... » read more

Power/Performance Bits: Mar. 13


Wireless charging Engineers at the University of Washington developed a method to safely charge a smartphone wirelessly using a laser, potentially as quickly as a standard USB cable. Safety features of the system include a reflector-based mechanism to shut off the laser and heatsinks. The charging beam is generated by a laser emitter that the team configured to produce a focused beam in the... » read more

Power/Performance Bits: Mar. 6


Neural network chip Neural networks are both slow and consume a lot of power. This made researchers at MIT examine the important aspects of the nodes within a neural network and to see how each part of the computation could be improved. The outcome was a dedicated chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power c... » read more

Power/Performance Bits: Feb. 27


Encryption chip A team at MIT developed a new chip to lower the power consumption of public-key cryptography for IoT devices. Software execution of encryption protocols require more energy and memory space than embedded IoT sensors can typically spare, given the need to maximize battery life. The new chip is hardwired to perform public-key encryption and consumes only 1/400 as much power as... » read more

Power/Performance Bits: Feb. 20


Wireless TENG Researchers at Clemson University developed a wireless triboelectric nanogenerator, or W-TENG, that can also act as a battery-free remote. The key to triboelectric nanogenerators is using materials that are opposite in their affinity for electrons so they generate a voltage when brought in contact with each other. For the W-TENG, one electrode was constructed of a multipart... » read more

Power/Performance Bits: Feb. 13


Silicon spintronics Engineers at the University of California, Riverside, developed new methods to detect signals from spintronic components made of low-cost metals and silicon. Spintronic devices generate little heat, use relatively minuscule amounts of electricity, and would require no energy to maintain data in memory. However, previously developed spintronic devices depend on complex struc... » read more

Power/Performance Bits: Feb. 6


Recycling cathodes Nanoengineers at the University of California San Diego developed an energy-efficient recycling process that restores used cathodes from spent lithium ion batteries. The process involves harvesting the degraded cathode particles from a used battery and then boiling and heat treating them. In new batteries built with the cathodes, charge storage capacity, charging time and ba... » read more

Power/Performance Bits: Jan. 30


Wavy display architecture Researchers at KAUST developed a new transistor architecture for flexible ultrahigh resolution devices aimed at boosting the performance of the display circuitry. Flat-panel displays use thin-film transistors, acting as switches, to control the electric current that activates individual pixels consisting of LEDs or liquid crystals. A higher field-effect mobility of... » read more

Power/Performance Bits: Jan. 23


Atomristors for thin memory Engineers at The University of Texas at Austin and Peking University developed a thin memory storage device with dense memory capacity. Dubbed "atomristors," the device enables 3-D integration of nanoscale memory with nanoscale transistors on the same chip. "For a long time, the consensus was that it wasn't possible to make memory devices from materials that were... » read more

← Older posts Newer posts →