Manufacturing Bits: April 14


Complex microparticles A team of researchers have developed the world’s most complex microparticle. In the lab, researchers have assembled hierarchically organized particles with twisted spikes and polydisperse Au-Cys (gold-cysteine) nanoplatelets or nanosheets. The sheets all twist in the same direction. Cysteine is a proteinogenic amino acid. The structure is said to be more complex ... » read more

Power/Performance Bits: April 14


Undoped polymer ink Researchers at Linköping University, Chalmers University of Technology, University of Washington, University of Cologne, Chiba University, and Yunnan University developed an organic ink for printable electronics that doesn't need to be doped for good conductivity. "We normally dope our organic polymers to improve their conductivity and the device performance. The proces... » read more

Covid-19 Tech Bits: April 14


Modeling coronavirus spread Four teams of Finnish researchers have modeled the coughing spread of COVID-19 in tight indoor areas, such as grocery stores and public transportation systems, using a supercomputer and 3D visualization. “The aerosol cloud spreads outside the immediate vicinity of the coughing person and dilutes in the process," said Aalto University Assistant Professor Ville V... » read more

COVID-19 Tech Bits


Tech companies, consortiums and universities are jumping in to help fight COVID-19, deploying everything from massive computing capabilities to developing new technologies that can protect medical workers and first responders. Nearly all of these have ramped up over the past several weeks, as the tech world begins to take on a global challenge to combat the deadly virus. Compute resources... » read more

Manufacturing Bits: April 6


Powerful electromagnets The National High Magnetic Field Laboratory (MagLab) has tested a new and powerful superconducting solenoid or electromagnet that operates at high currents. MagLab develops several different types of large and powerful magnets, which are used as scientific instruments. MagLab’s solenoid or electromagnet could one day be used to drive particle accelerators and compa... » read more

Power/Performance Bits: April 6


Durian supercapacitors Researchers from the University of Sydney developed a method that uses durian and jackfruit waste to create supercapacitors. Supercapacitors are capable of quickly storing and discharging energy. The team says their fruit-based material is more efficient than ones typically made from activated carbon. "Using durian and jackfruit purchased from a market, we conver... » read more

Manufacturing Bits: March 31


Whiskey webs The production and sale of counterfeit wine and spirits is becoming a big and nefarious business. Using time-lapse microscopy, researchers have developed a way to detect counterfeit whiskey. To detect counterfeit whiskey, the University of Louisville and North Carolina State University have uncovered the mechanism behind what researchers call “whiskey webs.” Whiskey webs... » read more

Power/Performance Bits: March 31


Tellurium transistors Researchers from Purdue University, Washington University in St Louis, University of Texas at Dallas, and Michigan Technological University propose the rare earth element tellurium as a potential material for ultra-small transistors. Encapsulated in a nanotube made of boron nitride, tellurium helps build a field-effect transistor with a diameter of two nanometers. �... » read more

Manufacturing Bits: March 24


Autonomous microscopes FLEET, also known as the ARC Centre of Excellence in Future Low-Energy Electronics Technologies, has developed an autonomous scanning probe microscopy (SPM) technology. SPM is an instrument that makes use of an atomically sharp probe. The probe is placed in close proximity above the surface of a sample. With the probe, the SPM forms images of the surface of the sample... » read more

Power/Performance Bits: March 24


Backscatter Wi-Fi radio Engineers at the University of California San Diego developed an ultra-low power Wi-Fi radio they say could enable portable IoT devices. Using 5,000 times less power than standard Wi-Fi radios, the device consumes 28 microwatts while transmitting data at a rate of 2 megabits per second over a range of up to 21 meters. "You can connect your phone, your smart devices, ... » read more

← Older posts Newer posts →