Manufacturing Bits: Oct. 9


Super atoms The Technical University of Munich (TUM) has devised what it calls a super atom, a technology that could one day enable a new class of catalysts. TUM developed a cluster made up of 55 copper and aluminum atoms. The cluster looks like a crystal, but it actually has the properties of an atom or a heterometallic super atom. The super atom could one day be used to develop more cost-... » read more

System Bits: Oct. 9


Sensing with light pulses In a development expected to be useful in applications including distance measurement, molecular fingerprinting and ultrafast sampling, EPFL researchers have found a way to implement an optical sensing system by using spatial multiplexing, a technique originally developed in optical-fiber communication, which produces three independent streams of ultrashort optical pu... » read more

Power/Performance Bits: Oct. 9


Spray-on antenna Engineers at Drexel University developed a sprayable form of the 2D material MXene that can be used to create antennas on nearly any surface. The antennas perform as well or better than the ones currently used in mobile devices and RFID tags. The MXene titanium carbide can be dissolved in water to create an ink or paint. The exceptional conductivity of the material enables ... » read more

Manufacturing Bits: Oct. 2


Quantum satellites The Fraunhofer Institute for Applied Optics and Precision Engineering has developed a critical technology to enable quantum satellites. Fraunhofer has developed a quantum source, which would be used in satellites. In theory, the source generates entangled photons and transmits them to Earth from a satellite. They would serve to distribute secure keys for encrypting data. ... » read more

System Bits: Oct. 2


Computer algorithms exhibit prejudice based on datasets Researchers at Cardiff University and MIT have shown that groups of autonomous machines are capable of demonstrating prejudice by identifying, copying, and learning this behavior from one another. The team noted that while it may seem that prejudice is a human-specific phenomenon that requires human cognition to form an opinion of, or ... » read more

Power/Performance Bits: Oct. 2


Photonic sensor Researchers at Washington University in St. Louis devised a way to record environmental data using a wireless photonic sensor resonator with a whispering-gallery-mode (WGM) architecture capable of resonating at light frequencies and also at vibrational or mechanical frequencies. Optical sensors are not affected by electromagnetic interference, a major benefit in noisy or har... » read more

Manufacturing Bits: Sept. 25


Simulating quarks and gluons The U.S. Department of Energy’s Oak Ridge National Laboratory is simulating sub-atomic particles on the world’s most powerful supercomputer. The system is simulating these particles at speeds over 70 times faster than the predecessor. More specifically, Oak Ridge is simulating quarks and gluons on the recently-announced Summit supercomputer. In simple terms,... » read more

System Bits: Sept. 25


Schottky diodes: One 2D material equation to rule them all Specifying the right materials for the heterostructure of 2D Schottky diodes—which consist of a metal touching a semiconductor—means designers have to wade through sometimes conflicting theoretical models to select materials. “It is not uncommon to see a model, whose underlying physics fundamentally contradicts with the physical ... » read more

Power/Performance Bits: Sept. 25


Heat transfer in 2D materials Engineers at the University of Illinois developed a way to reduce overheating in nanoelectronics that incorporate 2D components by adding another layer to the structure. "In the field of nanoelectronics, the poor heat dissipation of 2D materials has been a bottleneck to fully realizing their potential in enabling the manufacture of ever-smaller electronics whil... » read more

System Bits: Sept. 18


Better AI technique for chemistry predictions CalTech researchers have found a new technique that uses machine learning more effectively to predict how complex chemicals will react to reagents. The tool is a new twist on similar machine learning techniques to find more effective catalysts without having the time-consuming trial-and-error research, making it a time-saver for drug researchers. ... » read more

← Older posts Newer posts →