Power/Performance Bits: Mar. 19


Explainable AI Researchers from Technische Universität Berlin (TU Berlin), Fraunhofer Heinrich Hertz Institute (HHI), and Singapore University of Technology and Design (SUTD) propose a pair of algorithms to help determine how AI systems reach their conclusions. Explainable AI is an important step towards practical applications, argued Klaus-Robert Müller, Professor for Machine Learning at... » read more

Power/Performance Bits: Mar. 11


Reading qubits faster Researchers at Aalto University and VTT Technical Research Centre of Finland propose a faster way to read information from qubits, the building blocks of quantum computers. Currently, they are extremely sensitive to disruption even in cryogenic environments, holding quantum information for less than a millisecond. In the method now used to read information from a qubit... » read more

Power/Performance Bits: Mar. 5


Solar chemical manufacturing Researchers at RMIT University, CSIRO Manufacturing, and University of Melbourne developed a nano-enhanced material that can capture 99% of light and use it to power chemical reactions. One of the world's biggest energy users, the chemical manufacturing industry accounts for about 10% of global energy consumption and 7% of industrial greenhouse gas emissions. In th... » read more

Power/Performance Bits: Feb. 26


Integrated RRAM for edge AI Researchers at CEA-Leti and Stanford University have developed the first circuit integrating multiple-bit non-volatile Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide 2.3-times the capacity of existing RRAM. The proof-of-concept chip monolithically integrates two heterogeneous technologies: 18KB of on-chip... » read more

Power/Performance Bits: Feb. 19


Flexible energy harvesting rectenna Researchers from MIT, Universidad Politécnica de Madrid, University Carlos III of Madrid, Boston University, University of Southern California, and the Army Research Laboratory created a flexible rectenna capable of converting energy from Wi-Fi signals into electricity to power small devices and sensors. The device uses a flexible RF antenna to capture e... » read more

Power/Performance Bits: Feb. 11


Body heat harvesting Chemists at the University of Massachusetts Amherst developed a fabric that can harvest body heat to power small wearable electronics such as activity trackers. The device works on the thermoelectric effect created by body temperature and ambient cooler air. "What we have developed is a way to inexpensively vapor-print biocompatible, flexible and lightweight polymer fil... » read more

Power/Performance Bits: Feb. 5


Photonic-magnetic memory Researchers at the Eindhoven University of Technology (TU/e) have developed a hybrid photonic-magnetic memory device that takes advantage of the speed of optical writing and stability of magnetic drives. "All-optical switching for data storage has been known for about a decade. When all-optical switching was first observed in ferromagnetic materials - amongst the mo... » read more

Power/Performance Bits: Jan. 29


Neural nets struggle with shape Cognitive psychologists at the University of California Los Angeles investigated how deep convolutional neural networks identify objects and found a big difference between the way these networks and humans perceive objects. In the first of a series of experiments, the researchers showed color images of animals and objects that had been altered to have a diffe... » read more

Power/Performance Bits: Jan. 22


Efficient neural net training Researchers from the University of California San Diego and Adesto Technologies teamed up to improve neural network training efficiency with new hardware and algorithms that allow computation to be performed in memory. The team used an energy-efficient spiking neural network for implementing unsupervised learning in hardware. Spiking neural networks more closel... » read more

Power/Performance Bits: Jan. 14


Optical memory Researchers at the University of Oxford, University of Exeter, and University of Münster propose an all-optical memory cell that can store more optical data, 5 bits, in a smaller space than was previously possible on-chip. The optical memory cell uses light to encode information in the phase change material Ge2Sb2Te5. A laser causes the material to change between ordered and... » read more

← Older posts