System Bits: March 19


Nanomesh material could find use in sustainable applications Imec collaborated with KU Leuven to develop a nanomesh material made of a 3D structure with nanowires. This material could prove to make batteries more energy-efficient, while also improving catalytic converters and fuel cells, and making hydrogen production easier. The research team is touting the 3D nanometer-scale metal grid st... » read more

System Bits: March 11


Cryptography IC for the IoT Massachusetts Institute of Technology researchers report their development of a cryptographic circuit that could be used to protect low-power Internet of Things devices when quantum computing takes hold. [caption id="attachment_24144905" align="alignleft" width="300"] Image Credit: MIT[/caption] The research team presented a paper at the 2019 International Sol... » read more

System Bits: March 5


The new electronics field of magnonics Transistors keep shrinking to dimensions that are difficult to fabricate. There is doubt in the semiconductor industry about the possibility of producing 1-nanometer features with existing process technology. The answer may lie in magnonic currents: quasi-particles associated with waves of magnetization, or spin waves, in magnetic materials. Researcher... » read more

System Bits: Feb. 26


Firefly microstructures in LED light bulbs Pennsylvania State University researchers wanted to improve the energy efficiency of commercial light-emitting diode light bulbs to save even more energy. They found the answer in the lantern surface of fireflies. "LED lightbulbs play a key role in clean energy," said Stuart (Shizhuo) Yin, professor of electrical engineering at Penn State. "Overall... » read more

System Bits: Feb. 19


Eco-friendly material for wireless IoT sensors Researchers at Canada’s Simon Fraser University and in Switzerland collaborated on developing a wood-derived cellulose material that could be used in a 3D printer, instead of the customary plastic and polymeric materials for electronics. With 3D printing, the material can offer flexibility to add or embed functions onto 3D shapes or fabrics, the... » read more

System Bits: Feb. 11


Modeling computer vision on human vision University of Michigan scientists used digital foveation technology to render images that are more comprehensible to machine vision systems, while also reducing energy consumption by 80%. The effect is achieved by manipulating a camera’s firmware. “It'll make new things and things that were infeasible before, practical,” Professor Robert Dick s... » read more

System Bits: Feb. 5


Rubbery material for stretchable electronics Researchers at the University of Houston came up with a rubbery semiconducting material that they say could find applications in stretchable electronics, such as human-machine interfaces, implantable bioelectronics, and robotic skins. Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and correspo... » read more

System Bits: Jan. 29


Quantum physics make hybrid semiconductors glow Hybrid semiconducting materials have quantum properties capable of bringing significant changes to light-emitting diode lighting and monitors, along with photovoltaic solar cells, researchers at the Georgia Institute of Technology report. Physical chemists worked with halide organic-inorganic perovskite (HOIP), which combines a crystal lattice wi... » read more

System Bits: Jan. 22


Toward more trusted microelectronics David Crandall, an associate professor in Indiana University Bloomington’s School of Informatics, Computing and Engineering, is collaborating with other researchers through the Indiana Innovation Institute (IN3) to work on technology challenges for private industry and the U.S. Department of Defense. Crandall is currently tackling trusted microelectron... » read more

System Bits: Jan. 14


Integrated photonics platform Researchers at Harvard’s John A. Paulson School of Engineering and Applied Sciences came up with an integrated photonics platform capable of storing light and electrically controlling its frequency or color through a microchip. Mian Zhang, first author of the resulting paper, says, “Many quantum photonic and classical optics applications require shifting of op... » read more

← Older posts