Hybrid Bonding Makes Strides Toward Manufacturability


Hybrid bonding is gaining traction in advanced packaging because it offers the shortest vertical connection between dies of similar or different functionalities, as well as better thermal, electrical and reliability results. Advantages include interconnect scaling to submicron pitches, high bandwidth, enhanced power efficiency, and better scaling relative to solder ball connections. But whil... » read more

Mass Customization For AI Inference


Rising complexity in AI models and an explosion in the number and variety of networks is leaving chipmakers torn between fixed-function acceleration and more programmable accelerators, and creating some novel approaches that include some of both. By all accounts, a general-purpose approach to AI processing is not meeting the grade. General-purpose processors are exactly that. They're not des... » read more

Signals In The Noise: Tackling High-Frequency IC Test


The need for high-frequency semiconductor devices is surging, fueled by growing demand for advanced telecommunications, faster sensors, and increasingly autonomous vehicles. The advent of millimeter-wave communication in 5G and 6G is pushing manufacturers to develop chips capable of handling frequencies that were once considered out of reach. However, while these technologies promise faster ... » read more

Government Chip Funding Spreads Globally


This is the first in a series of articles tracking government chip investments. See part two for Americas-focused funding and part three for the UK and EMEA, and part four for Asia. Countries around the world are ramping up investments into their semiconductor industries as part of new or existing approaches. The increased government activity stems from growing awareness of the strategic imp... » read more

Partitioning In The Chiplet Era


The widespread adoption of chiplets in domain-specific applications is creating a partitioning challenge that is much more complex than anything chip design teams have dealt with in previous designs. Nearly all the major systems companies, packaging houses, IDMs, and foundries have focused on chiplets as the best path forward to improve performance and reduce power. Signal paths can be short... » read more

Using AI To Glue Disparate IC Ecosystem Data


AI holds the potential to change how companies interact throughout the global semiconductor ecosystem, gluing together different data types and processes that can be shared between companies that in the past had little or no direct connections. Chipmakers always have used abstraction layers to see the bigger picture of how the various components of a chip go together, allowing them to pinpoi... » read more

Memory Fundamentals For Engineers


Memory is one of a very few elite electronic components essential to any electronic system. Modern electronics perform extraordinarily complex duties that would be impossible without memory. Your computer obviously contains memory, but so does your car, your smartphone, your doorbell camera, your entertainment system, and any other gadget benefiting from digital electronics. This eBook prov... » read more

Defect Challenges Grow At The Wafer Edge


Reducing defects on the wafer edge, bevel, and backside is becoming essential as the complexity of developing leading-edge chips continue to increase, and where a single flaw can have costly repercussions that span multiple processes and multi-chip packages. This is made more difficult by the widespread rollout of such processes as hybrid bonding, which require pristine surfaces, and the gro... » read more

3.5D: The Great Compromise


The semiconductor industry is converging on 3.5D as the next best option in advanced packaging, a hybrid approach that includes stacking logic chiplets and bonding them separately to a substrate shared by other components. This assembly model satisfies the need for big increases in performance while sidestepping some of the thorniest issues in heterogeneous integration. It establishes a midd... » read more

Increasing Roles For Robotics In Fabs


Different types of robots with greater precision and mobility are beginning to be deployed in semiconductor manufacturing, where they are proving both reliable and cost-efficient. Static robots have been used for years inside of fabs, but they now are being supplemented by collaborative robots (cobots), autonomous mobile robots (AMRs), and autonomous humanoid robots to meet growing and widen... » read more

← Older posts Newer posts →