ISA and Microarchitecture Extensions Over Dense Matrix Engines to Support Flexible Structured Sparsity for CPUs (Georgia Tech, Intel Labs)


A technical paper titled "VEGETA: Vertically-Integrated Extensions for Sparse/Dense GEMM Tile Acceleration on CPUs" was published (preprint) by researchers at Georgia Tech and Intel Labs. Abstract: "Deep Learning (DL) acceleration support in CPUs has recently gained a lot of traction, with several companies (Arm, Intel, IBM) announcing products with specialized matrix engines accessible v... » read more

HW-SW Co-Design Solution For Building Side-Channel-Protected ML Hardware


A technical paper titled "Hardware-Software Co-design for Side-Channel Protected Neural Network Inference" was published (preprint) by researchers at North Carolina State University and Intel. Abstract "Physical side-channel attacks are a major threat to stealing confidential data from devices. There has been a recent surge in such attacks on edge machine learning (ML) hardware to extract the... » read more

Review of Tools & Techniques for DL Edge Inference


A new technical paper titled "Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review" was published in "Proceedings of the IEEE" by researchers at University of Missouri and Texas Tech University. Abstract: Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted in breakthroughs in many areas. However, deploying thes... » read more

New Method Improves Machine Learning Models’ Reliability, With Less Computing Resources (MIT, U. of Florida, IBM Watson)


A new technical paper titled "Post-hoc Uncertainty Learning using a Dirichlet Meta-Model" was published (preprint) by researchers at MIT, University of Florida, and MIT-IBM Watson AI Lab (IBM Research). The work demonstrates how to quantify the level of certainty in its predictions, while using less compute resources. “Uncertainty quantification is essential for both developers and users o... » read more

Heterogeneous Multi-Core HW Architectures With Fine-Grained Scheduling of Layer-Fused DNNs


A technical paper titled "Towards Heterogeneous Multi-core Accelerators Exploiting Fine-grained Scheduling of Layer-Fused Deep Neural Networks" was published by researchers at KU Leuven and TU Munich. Abstract "To keep up with the ever-growing performance demand of neural networks, specialized hardware (HW) accelerators are shifting towards multi-core and chiplet architectures. So far, thes... » read more

Efficiently Process Large RM Datasets In Underlying Memory Pool, Disaggregated Over CXL (KAIST)


A technical paper titled "Failure Tolerant Training with Persistent Memory Disaggregation over CXL" was published (preprint) by researchers at KAIST and Panmnesia. "TRAININGCXL can efficiently process large-scale recommendation datasets in the pool of disaggregated memory while making training fault tolerant with low overhead," states the paper. Find the technical paper here. or here (IEE... » read more

Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU (Ecole Polytechnique Montreal, IBM, Mila, CMC)


A new technical paper titled "BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU" was written by researchers at Ecole Polytechnique Montreal, IBM, Mila and CMC Microsystems. It was accepted for publication in the 2023, 28th Asia and South Pacific Design Automation Conference (ASP-DAC 2023) in Japan. Abstract: "We present a DNN accelerator that allows inference at arbitr... » read more

MTJ-based Circuits Provide Low-Cost, Energy Efficient Solution For Future Hardware Implementation in SC Algorithms


A review paper titled "Review of Magnetic Tunnel Junctions for Stochastic Computing" was published by researchers at University of Minnesota Twin Cities. Funding agencies include Semiconductor Research Corporation (SRC), CAPSL, NIST, DARPA and others. Abstract: "Modern computing schemes require large circuit areas and large energy consumption for neuromorphic computing applications, such as... » read more

Neural Architecture & Hardware Accelerator Co-Design Framework (Princeton/ Stanford)


A new technical paper titled "CODEBench: A Neural Architecture and Hardware Accelerator Co-Design Framework" was published by researchers at Princeton University and Stanford University. "Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either... » read more

2D-Materials-Based Electronic Circuits (KAUST and TSMC)


A special edition article titled "Electronic Circuits made of 2D Materials" was just published by Dr. Mario Lanza, KAUST Associate Professor of Material Science and Engineering, and Iuliana Radu, corporate researcher at TSMC. This special issue covers 21 articles from leading subject matter experts, ranging from materials synthesis and their integration in micro/nano-electronic devices and c... » read more

← Older posts Newer posts →