Improving Emergency Response in the Era of ADAS Vehicles in the Smart City


Abstract: "Management of emergency vehicles can be fostered within a Smart City, i.e. an urban environment in which many IoT devices are orchestrated by a distributed intelligence able to suggest to road users the best course of action in different traffic situations. By extending MATSim (Multi-Agent Transport Simulation Software), we design and test appropriate mitigation strategies when tr... » read more

OverlapNet: Loop Closing for LiDAR-based SLAM


Abstract: "Simultaneous localization and mapping (SLAM) is a fundamental capability required by most autonomous systems. In this paper, we address the problem of loop closing for SLAM based on 3D laser scans recorded by autonomous cars. Our approach utilizes a deep neural network exploiting different cues generated from LiDAR data for finding loop closures. It estimates an image overlap gene... » read more

E/E Architecture Synthesis: Challenges and Technologies


ACADEMIC PAPER Abstract "In recent years, the electrical and/or electronic architecture of vehicles has been significantly evolving. The new generation of cars demands a considerable amount of computational power due to a large number of safety-critical applications and driver-assisted functionalities. Consequently, a high-performance computing unit is required to provide the demanded pow... » read more

The Migration of Engine ECU Software From Single-Core to Multi-Core


Abstract "As multiple functions have been added to single-core-based engine electronic control units (ECUs) in vehicles, automotive researchers and manufacturers have actively studied multi-core architecture for engine ECUs. Multi-core architecture can provide load balancing and parallelism that can meet the requirements of international organization standard (ISO) 26262. However, since real-w... » read more

Multi-Task Network Pruning and Embedded Optimization for Real-time Deployment in ADAS


Abstract: "Camera-based Deep Learning algorithms are increasingly needed for perception in Automated Driving systems. However, constraints from the automotive industry challenge the deployment of CNNs by imposing embedded systems with limited computational resources. In this paper, we propose an approach to embed a multi- task CNN network under such conditions on a commercial prototy... » read more

Data Association Between Perception and V2V Communication Sensors


Abstract: "The connectivity between vehicles, infrastructure, and other traffic participants brings a new dimension to automotive safety applications. Soon all the newly produced cars will have Vehicle to Everything (V2X) communication modems alongside the existing Advanced Driver Assistant Systems (ADAS). It is essential to identify the different sensor measurements for the same targets (... » read more

Enhancement of Robustness in Object Detection Module for Advanced Driver Assistance Systems


Abstract: "A unified system integrating a compact object detector and a surrounding environmental condition classifier for enhancing the robustness of object detection scheme in advanced driver assistance systems (ADAS) is proposed in this paper. ADAS are invented to improve traffic safety and effectiveness in autonomous driving systems where object detection plays an extremely important rol... » read more

Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving


Abstract "We present an end-to-end method for object detection and trajectory prediction utilizing multi-view representations of LiDAR returns. Our method builds on a state-of-the-art Bird's-Eye View (BEV) network that fuses voxelized features from a sequence of historical LiDAR data as well as rasterized high-definition map to perform detection and prediction tasks. We extend the BEV network ... » read more

Research on quantum cognition in autonomous driving


Abstract "Autonomous vehicles for the intention of human behavior of the estimated traffic participants and their interaction is the main problem in automatic driving system. Classical cognitive theory assumes that the behavior of human traffic participants is completely reasonable when studying estimation of intention and interaction. However, according to the quantum cognition and ... » read more

Evaluation of Thermal Imaging on Embedded GPU Platforms for Application in Vehicular Assistance Systems


Abstract "This study is focused on evaluating the real-time performance of thermal object detection for smart and safe vehicular systems by deploying the trained networks on GPU & single-board EDGE-GPU computing platforms for onboard automotive sensor suite testing. A novel large-scale thermal dataset comprising of > 35,000 distinct frames is acquired, processed, and open-sourced in challengin... » read more

← Older posts Newer posts →