Fuzz testing has proven to be a powerful approach to detect unknown vulnerabilities in automotive systems.
Cybersecurity has become intertwined into each step of the automotive development process. In particular, fuzz testing has proven to be a powerful approach to detect unknown vulnerabilities in automotive systems. But with limited instrumentation, especially on software-heavy systems such as high-performance computers (HPCs), several types of issues go undetected, including memory leaks and cases when the application crashes then restarts quickly.
Because these automotive systems are based on operating systems such as Linux and Android, it’s possible to collect information from the system under test (SUT) to determine whether any exceptions were detected during fuzz testing. Details about the detected exceptions help developers better understand and identify the root cause of the issues and fix the problems more efficiently.
This paper introduces the Agent Instrumentation Framework and explains how it can be used to improve the fuzz testing of HPCs. It also shows how information can be collected from the target system to identify exceptions on the SUT to help developers detect the underlying cause of any issues found. And it includes a test bench based on this approach and the findings of fuzz testing performed against multiple SUTs. Based on the findings, the paper highlights several examples of issues that would not have been detected without the Agent Instrumentation Framework.
Click here to read more.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply