Looking beyond conventional design methods for all-electric vehicles.
Electric vehicles (EVs) are popularly held as the future of personal mobility and transportation. New electric car manufacturers are flooding the market while established OEMs divert more investment to electric vehicle programs in an attempt to stay ahead. Automotive electrical and electronic systems are becoming more complex, and the complexity is beginning to strain conventional design methods. Generative design will be a key enabler for new and established automotive companies as they develop all-electric vehicle platforms.
To read more, click here.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Increased transistor density and utilization are creating memory performance issues.
Lots of unknowns will persist for decades across multiple market segments.
FPGAs, CPUs, and equipment receive funding in China; 98 startups raise over $2 billion.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Some of the less common considerations for assessing the suitability of a system for high-performance workloads.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply