Home
TECHNICAL PAPERS

Geometric-Aware Model Merging Approach To Enhance Instruction Alignment in Chip LLMs (Nvidia)

popularity

A new technical paper titled “ChipAlign: Instruction Alignment in Large Language Models for Chip Design via Geodesic Interpolation” was published by researchers at NVIDIA Research.

Abstract:
“Recent advancements in large language models (LLMs) have expanded their application across various domains, including chip design, where domain-adapted chip models like ChipNeMo have emerged. However, these models often struggle with instruction alignment, a crucial capability for LLMs that involves following explicit human directives. This limitation impedes the practical application of chip LLMs, including serving as assistant chatbots for hardware design engineers. In this work, we introduce ChipAlign, a novel approach that utilizes a training-free model merging strategy, combining the strengths of a general instruction-aligned LLM with a chip-specific LLM. By considering the underlying manifold in the weight space, ChipAlign employs geodesic interpolation to effectively fuse the weights of input LLMs, producing a merged model that inherits strong instruction alignment and chip expertise from the respective instruction and chip LLMs. Our results demonstrate that ChipAlign significantly enhances instruction-following capabilities of existing chip LLMs, achieving up to a 26.6% improvement on the IFEval benchmark, while maintaining comparable expertise in the chip domain. This improvement in instruction alignment also translates to notable gains in instruction-involved QA tasks, delivering performance enhancements of 3.9% on the OpenROAD QA benchmark and 8.25% on production-level chip QA benchmarks, surpassing state-of-the-art baselines.”

Find the technical paper here. December 2024.

Deng, Chenhui, Yunsheng Bai, and Haoxing Ren. “ChipAlign: Instruction Alignment in Large Language Models for Chip Design via Geodesic Interpolation.” arXiv preprint arXiv:2412.19819 (2024).



Leave a Reply


(Note: This name will be displayed publicly)