Home
TECHNICAL PAPERS

Image Sensor Trained To Classify Optically Projected Images By Reading Out The Few Most Relevant Pixels

Researchers develop sparse pixel image sensor, based on two-dimensional array of metal–semiconductor–metal photodetectors with individually tunable photoresponsivity values.

popularity

New research paper “Sparse pixel image sensor” from Institute of Photonics, Vienna University of Technology.

Abstract
“As conventional frame-based cameras suffer from high energy consumption and latency, several new types of image sensors have been devised, with some of them exploiting the sparsity of natural images in some transform domain. Instead of sampling the full image, those devices capture only the coefficients of the most relevant spatial frequencies. The number of samples can be even sparser if a signal only needs to be classified rather than being fully reconstructed. Based on the corresponding mathematical framework, we developed an image sensor that can be trained to classify optically projected images by reading out the few most relevant pixels. The device is based on a two-dimensional array of metal–semiconductor–metal photodetectors with individually tunable photoresponsivity values. We demonstrate its use for the classification of handwritten digits with an accuracy comparable to that achieved by readout of the full image, but with lower delay and energy consumption.”

Find the ” Sparse pixel image sensor” open access technical paper here. Published April 2022.

Mennel, L., Polyushkin, D.K., Kwak, D. et al. Sparse pixel image sensor. Sci Rep 12, 5650 (2022). https://doi.org/10.1038/s41598-022-09594-y.

Visit Semiconductor Engineering’s Technical Paper library here and discover many more chip industry academic papers.



Leave a Reply


(Note: This name will be displayed publicly)