Neuromorphic Computing: Self-Adapting HW With ReRAMs


A new technical paper titled “A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing” was published by researchers at Infineon Technologies, Politecnico di Milano and IUNET, Weebit Nano, and CEA Leti.

“Neurobiological systems continually interact with the surrounding environment to refine their behaviour toward the best possible reward. Achieving such learning by experience is one of the main challenges of artificial intelligence, but currently it is hindered by the lack of hardware capable of plastic adaptation. Here, we propose a bio-inspired recurrent neural network, mastered by a digital system on chip with resistive-switching synaptic arrays of memory devices, which exploits homeostatic Hebbian learning for improved efficiency. All the results are discussed experimentally and theoretically, proposing a conceptual framework for benchmarking the main outcomes in terms of accuracy and resilience. To test the proposed architecture for reinforcement learning tasks, we study the autonomous exploration of continually evolving environments and verify the results for the Mars rover navigation. We also show that, compared to conventional deep learning techniques, our in-memory hardware has the potential to achieve a significant boost in speed and power-saving.”

Find the technical paper here. Published March 2023.

Bianchi, S., Muñoz-Martin, I., Covi, E. et al. A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing. Nat Commun 14, 1565 (2023). https://doi.org/10.1038/s41467-023-37097-5.

Leave a Reply

(Note: This name will be displayed publicly)