3.5D: The Great Compromise


The semiconductor industry is converging on 3.5D as the next best option in advanced packaging, a hybrid approach that includes stacking logic chiplets and bonding them separately to a substrate shared by other components. This assembly model satisfies the need for big increases in performance while sidestepping some of the thorniest issues in heterogeneous integration. It establishes a midd... » read more

Where Power Savings Really Count


Experts at the Table: Semiconductor Engineering sat down to discuss why and where improvements in architectures and data movement will have the biggest impact, with Hans Yeager, senior principal engineer, architecture, at Tenstorrent; Joe Davis, senior director for Calibre interfaces and EM/IR product management at Siemens EDA; Mo Faisal, CEO of Movellus; Trey Roessig, CTO and senior vice presi... » read more

Intel Vs. Samsung Vs. TSMC


The three leading-edge foundries — Intel, Samsung, and TSMC — have started filling in some key pieces in their roadmaps, adding aggressive delivery dates for future generations of chip technology and setting the stage for significant improvements in performance with faster delivery time for custom designs. Unlike in the past, when a single industry roadmap dictated how to get to the next... » read more

Trouble Ahead For IC Verification


Verification complexity is roughly the square of design complexity, but until recently verification success rates have remained fairly consistent. That's beginning to change. There are troubling signs that verification is collapsing under the load. The first-time success rate fell (see figure 1) in the last survey conducted by Wilson Research, on behalf of Siemens EDA, in 2022. A new survey ... » read more

Reduce 3D-IC Design Complexity: Early Package Assembly Verification


Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D-IC design in this new technical paper. As 2.5D and 3D-ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process. What you'll learn: Overcom... » read more

What Works Best For Chiplets


The semiconductor industry is preparing for the migration from proprietary chiplet-based systems to a more open chiplet ecosystem, in which chiplets fabricated by different companies of various technologies and device nodes can be integrated in a single package with acceptable yield. To make this work as expected, the chip industry will have to solve a variety of well-documented technical an... » read more

Faster And Better Floorplanning With ML-Based Macro Placement


The chips contained in today’s consumer and commercial electronic products are staggering in size and complexity. The largest devices include central processing units (CPUs), graphics processing units (GPUs), and system-on-chip (SoC) devices that integrate many functions on a single die. Additionally, chips are expanding beyond their traditional borders with multi-die approaches such as 2.5DI... » read more

What’s Missing In 2.5D EDA Tools


Gaps in EDA tool chains for 2.5D designs are limiting the adoption of this advanced packaging approach, which so far has been largely confined to high-performance computing. But as the rest of the chip industry begins migrating toward advanced packaging and chiplets, the EDA industry is starting to change direction. There are learning periods with all new technologies, and 2.5D advanced pack... » read more

3D-IC Intensifies Demand For Multi-Physics Simulation


The introduction of full 3D-ICs will require a simultaneous analysis of various physical effects under different workloads, a step-function change that will add complexity at every step of the design flow, expand and alter job responsibilities, and bring together the analog and digital design worlds in unprecedented ways. 3D-ICs will be the highest-performance advanced packaging option, in s... » read more

How Multiphysics Simulation Enables 3D-IC Implementation At The Speed Of Light


Electronic designers need greater integration densities and faster data transfer rates to meet the increased performance requirements of technologies like 5G/6G, autonomous driving, and artificial intelligence. The semiconductor industry is shifting toward 3D-IC design to keep up with the ever-growing demand for high-performance and power-efficient devices that has outpaced the capabilities o... » read more

← Older posts Newer posts →