Preparing For Ferroelectric Devices


The discovery of ferroelectricity in materials that are compatible with integrated circuit manufacturing has sparked a wave of interest in ferroelectric devices. Ferroelectrics are materials with a permanent polarization, the direction of which can be switched by an applied field. This polarization can be used to raise or lower the threshold voltage of a transistor, as in FeFETs, or it can c... » read more

3D Integration Supports CIM Versatility And Accuracy


Compute-in-memory (CIM) is gaining attention due to its efficiency in limiting the movement of massive volumes of data, but it's not perfect. CIM modules can help reduce the cost of computation for AI workloads, and they can learn from the highly efficient approaches taken by biological brains. When it comes to versatility, scalability, and accuracy, however, significant tradeoffs are requir... » read more

Domain-Specific Memory


Domain-specific computing may be all the rage, but it is avoiding the real problem. The bigger concern is the memories that throttle processor performance, consume more power, and take up the most chip area. Memories need to break free from the rigid structures preferred by existing software. When algorithms and memory are designed together, improvements in performance are significant and pr... » read more

FeFETs Bring Promise And Challenges


Ferroelectric FETs (FeFETs) and memory (FeRAM) are generating high levels of interest in the research community. Based on a physical mechanism that hasn’t yet been commercially exploited, they join the other interesting new physics ideas that are in various stages of commercialization. “FeRAM is very promising, but it's like all promising memory technologies — it takes a while to get b... » read more

More Data, More Memory-Scaling Problems


Memories of all types are facing pressures as demands grow for greater capacity, lower cost, faster speeds, and lower power to handle the onslaught of new data being generated daily. Whether it's well-established memory types or novel approaches, continued work is required to keep scaling moving forward as our need for memory grows at an accelerating pace. “Data is the new economy of this ... » read more

NVM Reliability Challenges And Tradeoffs


This second of two parts looks at different memories and possible solutions. Part one can be found here. While various NVM technologies, such as PCRAM, MRAM, ReRAM and NRAM share similar high-level traits, their physical renderings are quite different. That provides each with its own set of challenges and solutions. PCRAM has had a fraught history. Initially released by Samsung, Micron, a... » read more

Using Memory Differently To Boost Speed


Boosting memory performance to handle a rising flood of data is driving chipmakers to explore new memory types and different ways of using existing memory, but it also is creating some complex new challenges. For most of the semiconductor design industry, memory has been a non-issue for the past couple of decades. The main concerns were price and size, but memory makers have been more than a... » read more

Memory Options And Tradeoffs


Steven Woo, Rambus fellow and distinguished inventor, talks with Semiconductor Engineering about different memory options, why some are better than others for certain tasks, and what the tradeoffs are between the different memory types and architectures.     Related Articles/Videos Memory Tradeoffs Intensify In AI, Automotive Applications Why choosing memories and archi... » read more

New Memories And Architectures Ahead


Memory dominates many SoCs, and it is rare to hear that a design contains too much memory. However, memories consume a significant percentage of system power, and while this may not be a critical problem for many systems, it is a bigger issue for Internet of Things ([getkc id="76" kc_name="IoT"]) edge devices where total energy consumption is very important. Memory demands are changing in al... » read more

May The Cheapest Memory Win


There are a number of new memory types on the horizon. So why are we still using DRAM, SRAM and hard disk drives developed decades ago? The answer is complicated. Memory, whether it’s on-chip static RAM cache or off-chip dynamic RAM—or flash storage or spinning magnetic media—is really a stack of data storage technologies that need to work seamlessly together and with other non-memory ... » read more

← Older posts