Model-Based Systems Engineering


Today’s electronic systems are an increasingly complex combination of hardware and software components. They contain an ever-expanding range of functions, require more computing power, have to operate a wide variety of interfaces, comply with standards, and be compatible with established market solutions. Accommodating all the new functions and expanded capacity may require a larger silicon a... » read more

Optimizing Data Movement


Demand for new and better AI models is creating an insatiable demand for more processing power and much better data throughput, but it's also creating a slew of new challenges for which there are not always good solutions. The key here is figuring out where bottlenecks might crop up in complex chips and advanced packages. This involves a clear understanding of how much bandwidth is required ... » read more

Auto Sector Leads The Way In IC Security


Concerns about chip and system security are beginning to bear fruit in some markets, driven by the overlap in safety and security in automotive applications and the growing value of algorithms and complex systems in others. But how and when that security is implemented is still all over the map, and so is its effectiveness. The reasons are as nuanced as the designs themselves, which makes it... » read more

Cracking The Memory Wall


Processor performance continues to improve exponentially, with more processor cores, parallel instructions, and specialized processing elements, but it is far outpacing improvements in bandwidth and memory. That gap, the so-called memory wall, has persisted throughout most of this century, but now it is becoming more pronounced. SRAM scaling is slowing at advanced nodes, which means SRAM takes ... » read more

One Chip Vs. Many Chiplets


Experts at the Table: Semiconductor Engineering sat down to discuss the growing list of challenges at advanced nodes and in advanced packages, with Jamie Schaeffer, vice president of product management at GlobalFoundries; Dechao Guo, director of advanced logic technology R&D at IBM; Dave Thompson, vice president at Intel; Mustafa Badaroglu, principal engineer at Qualcomm; and Thomas Ponnusw... » read more

Globally Asynchronous, Locally Synchronous Clocks


Typical IC clocking schemes are under stress in complex chip/chiplet designs, where multiple compute elements may not be operating at the same frequency consistently. Some cores may be powered down to save energy, or they may age at different rates, which in turn reduces performance. Lee Vick, vice president of strategic marketing at Movellus, explains why locally asynchronous clocking schemes ... » read more

How Big A Deal Is Aging?


Nothing lasts forever, but in the semiconductor world things used to last long enough to become obsolete long before their end of life. That's no longer the case with newer nodes, and it is raising concerns in safety-critical markets such as automotive. Being able to fully understand what happens inside of chips is still a work in progress, and analysis approaches are trying to keep up. Unti... » read more

What To Do About Electrostatic Discharge


Electrostatic discharge is a well-understood phenomenon, but it’s becoming more difficult to plan for as single chips are replaced by multiple chips or chiplets in a package, and as the density of components continues to increase with each new node. In both cases, the probability for failure increases unless these sudden shocks are addressed in the design. Dermott Lynch, director of product m... » read more

How Quickly Will Multi-Die Systems Change Semiconductor Design?


For many decades, semiconductor design and implementation has been focused on monolithic, ever-larger and more complex single-chip implementation. This system-on-chip approach is now changing for a variety of reasons. The new frontier utilizes many chips assembled in new ways to deliver the required form-factor and performance. Multi-die systems are paving the way for new types of semiconduc... » read more

Everyone’s A System Designer With Heterogeneous Integration


The move away from monolithic SoCs to heterogeneous chips and chiplets in a package is accelerating, setting in motion a broad shift in methodologies, collaborations, and design goals that are felt by engineers at every step of the flow, from design through manufacturing. Nearly every engineer is now working or touching some technology, process, or methodology that is new. And they are inter... » read more

← Older posts