Power/Performance Bits: March 28


Storing solar energy as carbon monoxide A team at Indiana University engineered a molecule that collects and stores solar energy without solar panels. The molecule uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide more efficiently than any other method of carbon reduction. Burning fuel such as carbon monoxide produces carbon dioxide and releases e... » read more

Power/Performance Bits: Aug. 2


From sun to hydrocarbon fuel Researchers at the University of Illinois at Chicago have engineered a solar cell that cheaply and efficiently converts atmospheric carbon dioxide directly into usable hydrocarbon fuel, using only sunlight for energy. Unlike conventional solar cells, which convert sunlight into electricity that must be stored in heavy batteries, the new device converts atmosph... » read more

Manufacturing Bits: July 12


Detecting zeptojoules Aalto University has broken the world’s record for microwave detection. Specifically, researchers detected zeptojoule microwave pulses using a superconducting microwave detector, based on proximity-induced Josephson junctions. This broke the record by fourteenfold, according to researchers. Microwaves are a form of electromagnetic radiation. They have frequencies... » read more

Power/Performance Bits: May 19


3D microbatteries for large-scale on-chip integration By combining 3D holographic lithography and 2D photolithography, researchers from the University of Illinois at Urbana-Champaign created a high-performance 3D microbattery suitable for large-scale on-chip integration with microelectronic devices. According to Paul Braun, professor of materials science and engineering at Illinois, "Micr... » read more

Manufacturing Bits: July 23


Space Tubes In 2011, NASA produced a material that absorbs on average more than 99% of the ultraviolet, visible, infrared, and far-infrared light that hits it. NASA’s so-called “super-black” material is based on a thin layer of multi-walled carbon nanotubes. Tiny gaps between the nanotubes collect and trap light. The carbon absorbs the photons, preventing them from reflecting off surf... » read more

Newer posts →