Learning properties of ordered and disordered materials from multi-fidelity data

Source: Chen, C., Zuo, Y., Ye, W. et al. Learning properties of ordered and disordered materials from multi-fidelity data. Nat Comput Sci 1, 46–53 (2021). https://doi.org/10.1038/s43588-020-00002-x Abstract: "Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a n... » read more

Are Better Machine Training Approaches Ahead?

We live in a time of unparalleled use of machine learning (ML), but it relies on one approach to training the models that are implemented in artificial neural networks (ANNs) — so named because they’re not neuromorphic. But other training approaches, some of which are more biomimetic than others, are being developed. The big question remains whether any of them will become commercially viab... » read more

Integrating Memristors For Neuromorphic Computing

Much of the current research on neuromorphic computing focuses on the use of non-volatile memory arrays as a compute-in-memory component for artificial neural networks (ANNs). By using Ohm’s Law to apply stored weights to incoming signals, and Kirchoff’s Laws to sum up the results, memristor arrays can accelerate the many multiply-accumulate steps in ANN algorithms. ANNs are being dep... » read more