Optimizing Deep-Learning Inference For Embedded Devices

Deep artificial neural networks (ANNs) have emerged as universal feature extractors in various tasks as they approach (and in many cases surpass) human-level performance. They have become fundamental building blocks of almost every modern artificially intelligent (AI) application, from online shop recommendations to self-driving cars. This whitepaper highlights how different challenges relat... » read more

Integrating Memristors For Neuromorphic Computing

Much of the current research on neuromorphic computing focuses on the use of non-volatile memory arrays as a compute-in-memory component for artificial neural networks (ANNs). By using Ohm’s Law to apply stored weights to incoming signals, and Kirchoff’s Laws to sum up the results, memristor arrays can accelerate the many multiply-accumulate steps in ANN algorithms. ANNs are being dep... » read more