Challenges In RISC-V Verification


Designing a single-core RISC-V processor is relatively easy, but verifying it and debugging it is a different story. And it all becomes more complicated when multiple cores are involved, and when those cores need to be cache-coherent. Ashish Darbari, CEO of Axiomise, talks with Semiconductor Engineering about using assertions and formal verification technology to find bugs and prove coherency i... » read more

Engineers Or Their Tools: Which Is Responsible For Finding Bugs?


Experts at the table: Finding and eliminating bugs at the source can be painstaking work, but it can prevent bigger problems later in the design flow, when they are more difficult and expensive to fix.  Semiconductor Engineering sat down to discuss these issues with Ashish Darbari, CEO at Axiomise; Ziyad Hanna, corporate vice president R&D at Cadence; Jim Henson, ASIC verification software... » read more

3D-IC Intensifies Demand For Multi-Physics Simulation


The introduction of full 3D-ICs will require a simultaneous analysis of various physical effects under different workloads, a step-function change that will add complexity at every step of the design flow, expand and alter job responsibilities, and bring together the analog and digital design worlds in unprecedented ways. 3D-ICs will be the highest-performance advanced packaging option, in s... » read more

Formal Verification’s Usefulness Widens


Formal verification is being deployed more often and in more places in chip designs as the number of possible interactions grows, and as those chips are used in more critical applications. In the past, much of formal verification was focused on whether a chip would function properly. But as designs become more complex and heterogeneous, and as use cases change, formal verification is being u... » read more

EDA Back On Investors’ Radar


EDA is transforming from a staid but strategic sector into a hot investment market, fueled by strong earnings and growth, a clamoring for leading-edge and increasingly customized designs across new and existing markets, and the rollout of advanced technologies such as AI for a range of tools that will be needed to develop new architectures with much greater performance per watt. A confluence... » read more

RISC-V Micro-Architectural Verification


RISC-V processors are garnering a lot of attention due to their flexibility and extensibility, but without an efficient and effective verification strategy, buggy implementations may lead to industry problems. Prior to RISC-V, processor verification almost became a lost art for most semiconductor companies. Expertise was condensed into the few commercial companies that provided processors or... » read more

Week In Review: Design, Low Power


Renesas Electronics completed its acquisition of Panthronics, a fabless company specializing in near-field communication (NFC) wireless products. Renesas has already incorporated Panthronics NFC technology into several solution reference designs for applications such as payment, IoT, asset tracking, and smart meters. The European Commission announced new funding for the semiconductor and mic... » read more

Selecting The Right RISC-V Core


With an increasing number of companies interested in devices based on the RISC-V ISA, and a growing number of cores, accelerators, and infrastructure components being made available, either commercially or in open-source form, end users face an increasingly difficult challenge of ensuring they make the best choices. Each user likely will have a set of needs and concerns that almost equals th... » read more

Bug-Free Designs


It is possible in theory to create a design with no bugs, but it's impractical, unnecessary, and extremely difficult to prove for bugs you care about. The problem is intractable because the potential state space is enormous for any practical design. The industry has devised ways to handle this complexity, but each has limitations, makes assumptions, and employs techniques that abstract the p... » read more

Week In Review: Design, Low Power


The U.S. Commerce Department's Bureau of Industry and Security (BIS) issued new export controls on EDA software aimed at designing gate-all-around FETs, which manufacturers plan to implement starting at 3nm (Samsung) and 2nm (Intel and TSMC). Specifically, the ruling controls export of software that is specially designed for implementing RTL to GDSII (or an equivalent standard) for GAA FET desi... » read more

← Older posts