The New CXL Standard


Gary Ruggles, senior staff product marketing manager at Synopsys, digs into the new Compute Express Link standard, why it’s important for high bandwidth in AI/ML applications, where it came from, and how to apply it in current and future designs. » read more

Machine Learning Inferencing At The Edge


Ian Bratt, fellow in Arm's machine learning group, talks about why machine learning inferencing at the edge is so difficult, what are the tradeoffs, how to optimize data movement, how to accelerate that movement, and how it differs from developing other types of processors. » read more

Meltdown, Spectre And Foreshadow


Ben Levine, senior director of product management for Rambus’ Security Division, talks with Semiconductor Engineering about hardware-specific attacks, why they are so dangerous, and how they work. » read more

Edge Inferencing Challenges


Geoff Tate, CEO of Flex Logix, talks about balancing different variables to improve performance and reduce power at the lowest cost possible in order to do inferencing in edge devices. https://youtu.be/1BTxwew--5U » read more

Impacts Of Reliability On Power And Performance


Making sure a complex system performs as planned, and providing proper access to memories, requires a series of delicate tradeoffs that often were ignored in the past. But with performance improvements increasingly tied to architectures and microarchitectures, rather than just scaling to the next node, approaches such as determinism and different kinds of caching increasingly are becoming criti... » read more

Move Data Or Process In Place?


Should data move to available processors or should processors be placed close to memory? That is a question the academic community has been looking at for decades. Moving data is one of the most expensive and power-consuming tasks, and is often the limiter to system performance. Within a chip, Moore's Law has enabled designers to physically move memory closer to processing, and that has rema... » read more

Making high-capacity data caches more efficient


Source: Researchers from MIT, Intel, and ETH Zurich Xiangyao Yu (MIT), Christopher J. Hughes (Intel), Nadathur Satish (Intel) Onur Mutlu (ETH Zurich), Srinivas Devadas (MIT) Technical Paper link MIT News article As the transistor counts in processors have gone up, the relatively slow connection between the processor and main memory has become the chief impediment to improving comp... » read more

Power/Performance Bits: July 18


Ad hoc "cache hierarchies" Researchers at MIT and Carnegie Mellon University designed a system that reallocates cache access on the fly, to create new "cache hierarchies" tailored to the needs of particular programs. Dubbed Jenga, the system distinguishes between the physical locations of the separate memory banks that make up the shared cache. For each core, Jenga knows how long it would t... » read more

System Performance Analysis At ARM


Performance analysis is a vital task in modern SoC design. An under-designed SoC may run too slowly to keep up with the demands of the system. An over-designed SoC will consume too much power and require more expensive IP blocks. At ARM we want to help our partners build SoCs that deliver the best performance within their power and area budgets. The simple truth is that this is more difficul... » read more

Rethinking Main Memory


With newer, bigger programs and more apps multitasking simultaneously, the answer to making any system run faster, from handheld to super computer, was always just to add more DRAM. . . and more, and more and more. From data centers to wearables, that model no longer works. By offloading the storage of programs to less expensive solid-state drives (SSDs) and only using a small amount of exp... » read more

← Older posts