System Bits: Feb. 20


An evolution in electronics Restoring some semblance to those who have lost the sensation of touch has been a driving force behind Stanford University chemical engineer Zhenan Bao’s decades-long quest to create stretchable, electronically-sensitive synthetic materials. [caption id="attachment_24131783" align="aligncenter" width="300"] Zhenan Bao, the K.K. Lee professor of chemical engineer... » read more

Power/Performance Bits: July 18


Ad hoc "cache hierarchies" Researchers at MIT and Carnegie Mellon University designed a system that reallocates cache access on the fly, to create new "cache hierarchies" tailored to the needs of particular programs. Dubbed Jenga, the system distinguishes between the physical locations of the separate memory banks that make up the shared cache. For each core, Jenga knows how long it would t... » read more

Manufacturing Bits: Nov. 23


Materials database The Department of Energy’s Lawrence Berkeley National Laboratory has published a study that quantifies the thermodynamic scale of metastability of some 29,902 materials. To quantify the materials, researchers used Berkeley Lab’s Materials Project, a large and open database of known and predicted materials. The open and Web-based database has calculated the properties ... » read more

System Bits: March 15


Drilling into metabolic details with big data In a development that may help researchers find new therapeutic targets for cancer and other diseases, Rice University researchers have created a fast computational method to model tissue-specific metabolic pathways. The team explained that metabolic pathways are immense networks of biochemical reactions that keep organisms functioning and are a... » read more

System Bits: Jan. 19


Electromagnetic properties of graphene-boron nitride materials Rice University and Montreal Polytechnic researchers reported that developing novel materials from the atoms up goes faster when some of the trial and error is eliminated. The work aims to simplify development of certain exotic materials for next-generation electronics. Specifically, Rouzbeh Shahsavari, a Rice materials scient... » read more

System Bits: Nov. 11


How transistors operate at absolute zero Research led by scientists at Chalmers University of Technology in Sweden and Caltech in California have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures, which is expected to be of importance for future discoveries in such as quantum computers and radio astronomy. The team also included researchers ... » read more

Newer posts →