Semiconductor Device Manufacturing Process Challenges And Opportunities


Semiconductor device manufacturing involves a complex series of processes that transform raw materials into finished devices. The process typically involves four major stages: wafer fabrication, wafer testing, assembly or packaging, and final testing. Each stage has its own unique set of challenges and opportunities. The semiconductor device manufacturing process faces several challenges, inclu... » read more

Progress In The Fabrication Of CMOS Devices Based On Stacked 2D TMD Nanoribbons (Intel)


A technical paper titled “Process integration and future outlook of 2D transistors” was published by researchers at Intel Corporation. Abstract: "The academic and industrial communities have proposed two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors as a future option to supplant silicon transistors at sub-10nm physical gate lengths. In this Comment, we share the r... » read more

Epi SiGe Application Using METRION In-Line SIMS System


The epitaxial process is a well-established deposition technique in semiconductor fabrication because it enables the ability to achieve much higher doping concentrations than can be obtained via ion implantation. As we move toward <5nm technology, a key process for enabling gate-all-around FET (GAAFET) is the stacked multi-lattice of Silicon (Si) and Silicon-germanium (SiGe) epi process for ... » read more

Scaling Down To 2nm: Using Microwaves For Efficient & Stable Doping


A new technical paper titled "Efficient and stable activation by microwave annealing of nanosheet silicon doped with phosphorus above its solubility limit" was just published by researchers at National Taiwan University, Cornell University, TSMC, University of Valladolid, DSG Technologies, National Central University and National Yang Ming Chiao Tung University. A modified microwave was used... » read more

Speeding Up NMOS


By Ed Sperling For years—decades, in fact—the NMOS transistor world has been on cruise control. NMOS is naturally faster and its performance has scaled better than PMOS. PMOS has had a cost advantage. But lately, it has been catching up in performance, too. In fact, at 20nm the two transistor types have proven nearly equal in performance—but not for long. NMOS is about to get a big bo... » read more