中文 English

GPIO IP For Automotive Functional Safety


By Nidhi Bhasin, Shivakumar Chonnad, Vladimir Litovtchenko, and Sowjanya Syamala The prevalence and complexity of electronics and software (EE systems) in automotive applications are increasing with every new generation of car. The critical functions within the system on a chip (SoC) involve hardware and software that perform automotive-related signal communication at high data rates to and ... » read more

GPIOs: Critical IP For Functional Safety Applications


The prevalence and complexity of electronics and software (EE systems) in automotive applications are increasing with every new generation of car. The critical functions within the system on a chip (SoC) involve hardware and software that perform automotive-related signal communication at high data rates to and from the components off-chip. Every SoC includes general purpose IOs (GPIOs) on its ... » read more

Meeting Automotive Functional Safety Requirements With GPIOs


Automotive OEMs are building advanced driver assistance systems (ADAS) to improve safety. ADAS systems must meet stringent performance, power, and cost requirements, so the system-on-chips (SoCs) that make up ADAS and passenger safety systems integrate advanced protocols and are built on leading edge finFET process technologies. Designers of this new class of ADAS SoCs are challenged to meet IS... » read more

Tiling Is Critical For eFPGA Users: ArrayLinx Delivers


FPGA chips come in multiple sizes — modular blocks of programmable logic, DSP MACs and RAM are intermixed in different sizes and ratios then stitched together with top-level interconnect, clocking, etc and surrounded by a ring of I/Os like GPIO, SerDes, USB, etc. There is extensive engineering and top-level physical design for each distinct FPGA array and chip. eFPGA is different: Custome... » read more