GDDR6 – HBM2 Tradeoffs


Steven Woo, Rambus fellow and distinguished inventor, talks about why designers choose one memory type over another. Applications for each were clearly delineated in the past, but the lines are starting to blur. Nevertheless, tradeoffs remain around complexity, cost, performance, and power efficiency.   Related Video Latency Under Load: HBM2 vs. GDDR6 Why data traffic and bandw... » read more

The Growing Challenge Of Thermal Guard-Banding


Guard-banding for heat is becoming more difficult as chips are used across a variety of new and existing applications, forcing chipmakers to architect their way through increasingly complex interactions. Chips are designed to operate at certain temperatures, and it is common practice to develop designs with some margin to ensure correct functionality and performance throughout the operat... » read more

Making Sense Of DRAM


Graham Allan, senior manager for product marketing at Synopsys, examines the different types of DRAM, from GDDR to HBM, which markets they’re used in, and why there is such disparity between them. https://youtu.be/ynvcPfD2cZU     __________________________________ See more tech talk videos here. » read more

Power/Performance Bits: Sept. 25


Heat transfer in 2D materials Engineers at the University of Illinois developed a way to reduce overheating in nanoelectronics that incorporate 2D components by adding another layer to the structure. "In the field of nanoelectronics, the poor heat dissipation of 2D materials has been a bottleneck to fully realizing their potential in enabling the manufacture of ever-smaller electronics whil... » read more

Fostering Thermal Design Innovation Using Chip-Package-System Analysis Techniques


As devices continue to become smaller and more portable Moore’s Law continues to increase the number of transistors that fit within a chip albeit many predict an end to this in the near future. However new interconnect technologies that use Through-Silicon-Vias (TSVs) can place ICs next to each other using 2.5D Interposers or stack chips in 3D resulting in even greater system scaling. This co... » read more

Power/Performance Bits: July 16


Bacterial solar Researchers at the University of British Columbia developed a solar cell that uses bacteria to convert light to energy. The cell worked as efficiently in dim light as in bright light, making solar a potential option in areas of the world that frequently have overcast skies. Called biogenic cells, they work by utilizing the natural dye that bacteria use for photosynthesis. Pr... » read more

System-Level Power Modeling Takes Root


Power, heat, and their combined effects on aging and reliability, are becoming increasingly critical variables in the design of chips that will be used across a variety of new and existing markets. As more processing moves to edge, where sensors are generating a tsunami of data, there are a number of factors that need to be considered in designs. On one side, power budgets need to reflect th... » read more

IP And Power


[getkc id="108" kc_name="Power"] is quickly becoming a major differentiator for products, regardless of whether they are connected to a wall outlet or dependent on a battery. At the same time, increasing amounts of a chips content comes from third-party [getkc id="43" kc_name="IP"]. So how do system designers ensure that the complete system has an optimal power profile, and what can they do to ... » read more

Closing The Loop On Power Optimization


[getkc id="108" kc_name="Power"] has become a significant limiter for the capabilities of a chip at finer geometries, and making sure that performance is maximized for a given amount of power is becoming a critical design issue. But that is easier said than done, and the tools and methodologies to overcome the limitations of power are still in the early definition stages. The problem spans a... » read more

Power/Performance Bits: April 18


Cooling hotspots Engineers at Duke University and Intel developed a technology to cool hotspots in high-performance electronics. The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking hea... » read more

← Older posts