Research Bits: Dec. 3


Self-assembly of mixed-metal oxide arrays Researchers from North Carolina State University and Iowa State University demonstrated a technique for self-assembling electronic devices. The proof-of-concept work was used to create diodes and transistors with high yield and could be used for more complex electronic devices. “Our self-assembling approach is significantly faster and less expensi... » read more

Characterizing Defects Inside Hexagonal Boron Nitride (KAIST, NYU, et al.)


A new technical paper titled "Characterizing Defects Inside Hexagonal Boron Nitride Using Random Telegraph Signals in van der Waals 2D Transistors" was published by researchers at KAIST, NYU, Brookhaven National Laboratory, and National Institute for Materials Science. Abstract: "Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantu... » read more

Research Bits: Sept. 9


All-silicon polarization multiplexer Researchers from the University of Adelaide and Osaka University propose an ultra-wideband integrated terahertz polarization (de)multiplexer implemented on a substrateless silicon base, which they tested in the sub-terahertz J-band (220-330 GHz) for 6G communications. “Our proposed polarization multiplexer will allow multiple data streams to be transmi... » read more

Properties of Commercially Available Hexagonal Boron Nitride Grown By The CVD Method


A new technical paper titled "On the quality of commercial chemical vapour deposited hexagonal boron nitride" was published by researchers at KAUST and the National Institute for Materials Science in Japan. Abstract "The semiconductors industry has put its eyes on two-dimensional (2D) materials produced by chemical vapour deposition (CVD) because they can be grown at the wafer level with sm... » read more

A New Layered Structure With 2D Material That Exhibits A Unique Transfer Of Energy And Charge


A technical paper titled “Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy Transfer from Lower-to-Higher Bandgap 2D Material” was published by researchers at University of Warsaw, Brookhaven National Laboratory, and National Institute for Materials Science (Japan). Abstract: "High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L... » read more

Antenna For Nanoscale Light Source By Placing The TMD Outside The Tunnelling Pathway


A technical paper titled "Exciton-assisted electron tunnelling in van der Waals heterostructures" was published by researchers at ETH Zürich, The Barcelona Institute of Science and Technology, Swiss Federal Laboratories for Materials Science and Technology, National Institute for Materials Science, University of Basel, and Institució Catalana de Recerca i Estudis Avançats (ICREA). Abstract:... » read more

Hexagonal Boron Nitride Memristors With Nickel Electrodes: Current Conduction Mechanisms & Resistive Switching Behavior (RWTH Aachen)


A new technical paper titled "Resistive Switching and Current Conduction Mechanisms in Hexagonal Boron Nitride Threshold Memristors with Nickel Electrodes" was published by researchers at RWTH Aachen University and Peter Gruenberg Institute. Abstract: "The 2D insulating material hexagonal boron nitride (h-BN) has attracted much attention as the active medium in memristive devices due to i... » read more

Large Area Synthesis of 2D Material Hexagonal Boron Nitride, Improving Device Characteristics of Graphene


A new technical paper titled "Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays" was published by researchers at Kyushu University, National Institute of Advanced Industrial Science and Technology (AIST), and Osaka University. Abstract "Multilayer hexagonal boron nitride (hBN) can be used to preserve the intrinsic physical properti... » read more

2D Semiconductor Materials Creep Toward Manufacturing


As transistors scale down, they need thinner channels to achieve adequate channel control. In silicon, though, surface roughness scattering degrades mobility, limiting the ultimate channel thickness to about 3nm. Two-dimensional transition metal dichalcogenides (TMDs), such as MoS2 and WSe2, are attractive in part because they avoid this limitation. With no out-of-plane dangling bonds and at... » read more

Research Bits: April 5


Creating qubits in bulk Researchers from Intel and QuTech, an institute of the Delft University of Technology and the Netherlands Organisation for Applied Scientific Research (TNO), built a qubit using standard semiconductor manufacturing facilities. The qubit is based on the spin of single electrons that are captured in a silicon nanoscale device, which resembles conventional transistors. ... » read more

← Older posts