Big Changes Ahead In Power Delivery, Materials, And Interconnects


Part one of this forecast looked at evolving transistor architectures and lithography platforms. This report examines revolutions in interconnects and packaging. When it comes to device interconnects, it’s hard to beat copper. Its low resistivity and high reliability have served the industry exceedingly well as both on-chip interconnect and wires between chips. But in logic chips, with int... » read more

Process Innovations Enabling Next-Gen SoCs and Memories


Achieving improvements in performance in advanced SoCs and packages — those used in mobile applications, data centers, and AI — will require complex and potentially costly changes in architectures, materials, and core manufacturing processes. Among the options under consideration are new compute architectures, different materials, including thinner barrier layers and those with higher th... » read more

Devices And Transistors For The Next 75 Years


The 75th anniversary of the invention of the transistor sparked a lively panel discussion at IEDM, spurring debate about the future of CMOS, the role of III-V and 2D materials in future transistors, and what will be the next great memory architecture.[1] Industry veterans from the memory, logic, and research communities see high-NA EUV production, NAND flash with 1,000 layers, and hybrid bon... » read more

Ferroelectric Memories: The Middle Ground


The first article in this series considered the use of ferroelectrics to improve subthreshold swing behavior in logic transistors. The prospects for ferroelectrics in logic applications are uncertain, but ferroelectric memories have clear advantages. The two most common commercial memories lie at opposite ends of a spectrum. DRAM is fast, but requires constant power to maintain its informat... » read more

The Path To Known Good Interconnects


Chiplets and heterogenous integration (HI) provide a compelling way to continue delivering improvements in performance, power, area, and cost (PPAC) as Moore’s Law slows, but choosing the best way to connect these devices so they behave in consistent and predictable ways is becoming a challenge as the number of options continues to grow. More possibilities also bring more potential interac... » read more

Week In Review: Manufacturing, Test


The more than 1,400 attendees at this week’s IEDM, which celebrated the 75th anniversary of the transistor, were clearly focused on making the next 75 years of semiconductors even more remarkable than the last. Intel, Samsung, TSMC, STMicroelectronics, GlobalFoundries and imec announced breakthrough devices, materials, and even integration approaches. These included: Intel showcased adva... » read more

What’s Different About Next-Gen Transistors


After nearly a decade and five major nodes, along with a slew of half-nodes, the semiconductor manufacturing industry will begin transitioning from finFETs to gate-all-around stacked nanosheet transistor architectures at the 3nm technology node. Relative to finFETs, nanosheet transistors deliver more drive current by increasing channel widths in the same circuit footprint. The gate-all-aroun... » read more

Driving Toward More Rugged, Less Expensive SiC


Silicon carbide is gaining traction in the power semiconductor market, particularly in electrified vehicles, but it's still too expensive for many applications. The reasons are well understood, but until recently SiC was largely a niche technology that didn't warrant the investment. Now, as demand grows for chips that can work in high-voltage applications, SiC is getting a much closer look. ... » read more

Highly Selective Etch Rolls Out For Next-Gen Chips


Several etch vendors are starting to ship next-generation selective etch tools, paving the way for new memory and logic devices. Applied Materials was the first vendor to ship a next-gen selective etch system, sometimes called highly-selective etch, in 2016. Now, Lam Research, TEL, and others are shipping tools with highly-selective etch capabilities, in preparation for futuristic devices su... » read more

2D Semiconductors Make Progress, But Slowly


Researchers are looking at a variety of new materials at future nodes, but progress remains slow. In recent years, 2D semiconductors have emerged as a leading potential solution to the problem of channel control in highly scaled transistors. As devices shrink, the channel thickness should shrink proportionally. Otherwise, the gate capacitance won’t be large enough to control the flow of cu... » read more

← Older posts