中文 English

Neural Networks Without Matrix Math


The challenge of speeding up AI systems typically means adding more processing elements and pruning the algorithms, but those approaches aren't the only path forward. Almost all commercial machine learning applications depend on artificial neural networks, which are trained using large datasets with a back-propagation algorithm. The network first analyzes a training example, typically assign... » read more

IBM Takes AI In Different Directions


Jeff Welser, vice president and lab director at IBM Research Almaden, sat down with Semiconductor Engineering to discuss what's changing in artificial intelligence and what challenges still remain. What follows are excerpts of that conversation. SE: What's changing in AI and why? Welser: The most interesting thing in AI right now is that we've moved from narrow AI, where we've proven you... » read more

3D Neuromorphic Architectures


Matrix multiplication is a critical operation in conventional neural networks. Each node of the network receives an input signal, multiplies it by some predetermined weight, and passes the result to the next layer of nodes. While the nature of the signal, the method used to determine the weights, and the desired result will all depend on the specific application, the computational task is simpl... » read more