Power/Performance Bits: Sept. 5


Energy-harvesting yarn Researchers at the University of Texas at Dallas and Hanyang University in South Korea developed a carbon nanotube yarn that generates electricity when stretched or twisted. Possible applications for the so-called "twistron" yarns include harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a sel... » read more

Power/Performance Bits: May 23


Biosupercapacitor Researchers from UCLA and the University of Connecticut designed a biological supercapacitor, a new biofriendly energy storage system which operates using ions from fluids in the human body. The device is harmless to the body's biological systems, say the researchers, and could lead to longer-lasting cardiac pacemakers and other implantable medical devices. The supercapa... » read more

Power/Performance Bits: May 2


Turning bottles into batteries Researchers at the University of California, Riverside used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. Billions of glass bottles end up in landfills every year, prompting the researchers to ask whether silicon dioxide in waste beverage bottles could provide high purity silicon ... » read more

Pushing Batteries Too Far?


Reports of battery fires in consumer devices are not abating. The culprit in almost all cases is the lithium-ion battery. In some cases, this is a manufacturing issue, where predictable intervals of failure can point to a breach in the membrane separating the anode and cathode or a metal particle contaminant that causes a short circuit. Those kinds of flaws are well understood, based upon ho... » read more

Power/Performance Bits: March 14


Magnetic storage on one atom Scientists at IBM Research created a single-atom magnet and were able to store one bit of data on it, making it the world's smallest magnetic storage device. Using electrical current, the researchers showed that two magnetic atoms could be written and read independently even when they were separated by just one nanometer. This tight spacing could, the team hop... » read more

Power/Performance Bits: March 7


Supercapacitor plants Scientists at Linköping University in Sweden developed a method for transforming roses into supercapacitors that can be charged and discharged hundreds of times. The team created a solution that, when fed through the cut end of the stem, polymerizes inside the rose's vascular system with the plant's own biochemical response mechanism acting as catalyst, creating lon... » read more

Power/Performance Bits: Nov. 1


New approach to switches According to the National Resource Defense Council, Americans waste up to $19 billion annually in electricity costs due to always-on digital devices in the home that suck power even when they are turned off. With that in mind, a team from University of Utah devised a new kind of switch for electronic circuits that uses solid electrolytes such as copper sulfide to ... » read more

Power/Performance Bits: Jan. 12


Incandescent bulbs might not be dead yet Can incandescent bulbs be as efficient – or even more so – than LEDs? More than 95 percent of the energy that goes into incandescents is wasted, most of it as heat, so researchers at MIT and Purdue University struck out to see if that could be changed. A conventional heated metal filament, with all its attendant losses, served as the basis. But... » read more

Power/Performance Bits: Nov. 10


Singing to your storage Existing research on 'racetrack memory', which uses tiny magnetic wires, each one hundreds of times thinner than a human hair, down which magnetic bits of data run like racing cars around a track, has focused on using either magnetic fields or electric currents to move the data bits down the wires. However, both these options create heat and reduce power efficiency. ... » read more

Power/Performance Bits: Aug. 18


Reducing crosstalk with tantalum oxide memories Scientists at Rice University created a solid-state memory technology that allows for high-density storage with a minimum incidence of crosstalk errors. The memories are based on tantalum oxide. Applying voltage to a 250-nanometer-thick sandwich of graphene, tantalum, nanoporous tantalum oxide and platinum creates addressable bits where the ... » read more

← Older posts Newer posts →