Power/Performance Bits: Aug. 5


Biofuels from microorganisms Researchers at Uppsala University are working on adapting microorganisms to be capable of producing useful biofuels out of carbon dioxide and solar energy. The team is focused on a series of modified cyanobacteria that produces the alcohol butanol, said Pia Lindberg, Senior Lecturer at the Department of Chemistry Ångström Laboratory, Uppsala University. "When ... » read more

Power/Performance Bits: June 10


Quantum dots plus perovskites Researchers at the University of Toronto and KAUST created a hybrid material for solar cells that utilizes both perovskites and quantum dots. Both quantum dots and perovskites suffer from instability: perovskites degrade quickly and certain types become incapable of fully absorbing solar radiation at room temperature, while quantum dots must be covered with a p... » read more

System Bits: June 4


Thin films for quantum computing Researchers at Los Alamos National Laboratory report their development of two-dimensional tungsten/selenium thin films that can control the emission of single photons, potentially useful in quantum technologies. “Efficiently controlling certain thin-film materials so they emit single photons at precise locations—what’s known as deterministic quantum em... » read more

Week in Review: IoT, Security, Auto


Internet of Things Gartner identified what it says are the top 10 strategic Internet of Things technologies and trends. Number one, no surprise, is artificial intelligence. Nick Jones, research vice president at Gartner, said in a statement, “AI will be applied to a wide range of IoT information, including video, still images, speech, network traffic activity, and sensor data.” Other top t... » read more

Power/Performance Bits: Jan. 16


Lithium-iron-oxide battery Scientists at Northwestern University and Argonne National Laboratory developed a rechargeable lithium-iron-oxide battery that can cycle more lithium ions than its common lithium-cobalt-oxide counterpart, leading to a much higher capacity. For their battery, the team not only replaced cobalt with iron, but forced oxygen to participate in the reaction process as we... » read more

System Bits: Sept. 12


Neural network cautionary tale As machine learning and neural networks proliferate widely today, there is a need to exercise caution in how they are employed, according to Stanford University researchers Michal Kosinki and Yilun Wang. In a study conducted recently, they have shown that deep neural networks can be used to determine the sexual orientation of a person, and caution that this ma... » read more

Power/Performance Bits: April 18


Cooling hotspots Engineers at Duke University and Intel developed a technology to cool hotspots in high-performance electronics. The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking hea... » read more

Power/Performance Bits: July 12


Thin transistors Scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory developed a way to chemically assemble transistors and circuits that are only a few atoms thick. The team controlled the synthesis of a transistor in which narrow channels were etched onto conducting graphene, with molybdenum disulfide (MoS2) seeded in the blank channels. Both of these m... » read more

Unexpected Security Holes


Security is emerging as one of the top challenges in semiconductor design across a variety of markets, with the number of security holes growing by orders of magnitude in sectors that have never dealt with these kinds of design constraints before. While security has been a topic of conversation for years in mobile phones and data centers, commercial and industrial equipment is being connecte... » read more

System Bits: April 12


Highly aligned, wafer-scale films Rice University researchers, with support from Los Alamos National Laboratory, have created inch-wide, flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes with the help of a simple filtration process. The chirality-enriched single-walled carbon nanotubes assemble themselves by the millions into long rows that are aligned better... » read more

← Older posts Newer posts →