Power/Performance Bits: Dec. 19


Stabilizing perovskites Scientists at EPFL and the University of Cordoba found a way to improve the stability of perovskite solar cells. While perovskites show promising efficiencies as solar cells, they are soft crystalline materials and prone to problems due to decomposition over time. By introducing the large organic cation guanidinium (CH6N3+) into methylammonium lead iodide perovskites, t... » read more

Manufacturing Bits: Oct. 31


Tiny jet engines The Max Planck Institute for Intelligent Systems has developed the world´s smallest jet engine. Samuel Sánchez, a researcher from the Stuttgart, Germany-based R&D organization, officially received the Guinness World Record certification for the smallest nanotube travelling through fluid. The technology makes use of propulsion, which resembles the characteristics of a ... » read more

System Bits: Oct. 31


Software enables cars to auto-report diagnostics Thanks to researchers at MIT, it may soon be possible to hop into a ride-share car, glance at a smartphone app, and tell the driver that the car’s left front tire needs air, its air filter should be replaced next week, and its engine needs two new spark plugs. [caption id="attachment_409967" align="alignnone" width="300"] A new smartphone a... » read more

Manufacturing Bits: Aug. 22


Weighing protons The Max Planck Institute and Riken have conducted the world’s most precise measurement of the mass of a proton. Based on an experiment, researchers determined that the mass of a proton is 1.007276466583(15)(29) atomic mass units. This is three times more precise than the previous measurements from others. The numbers in parentheses refer to the statistical and systematic ... » read more

Power/Performance Bits: Jan. 17


Creating magnets with electricity Researchers at the SLAC National Accelerator Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea Institute of Materials Science, Pohang University of Science and Technology, Max Planck Institute, and the University of New South Wales drew magnetic squares in a nonmagnetic material with an electrified pen and then "read" this magneti... » read more

Manufacturing Bits: Dec. 27


Coffee ring effect In physics, the “coffee ring effect" has been the subject of study for years. This phenomenon is a simple concept. A liquid or droplet hits a surface and dries. The particles in the droplet are suspended. And ultimately, it leaves a ring-like pattern. The phenomenon is named for the formation of a ring-like deposit when coffee or other liquid resides on a surface. ... » read more

Manufacturing Bits: Aug. 30


Redefining the ampere In 2014, an international group called the BIPM agreed to redefine four common units of measurements--the kilogram, the ampere, the kelvin and the mole. These units of measurement make up the so-called International System of Units or SI. In total, there are seven SI base units—meter, kilogram, second, ampere, kelvin, mole, and the candela. Work is already under wa... » read more

Power/Performance Bits: June 21


A chip with 1,000 processors A microchip containing 1,000 independent programmable processors has been designed by a team at the University of California, Davis. Called the KiloCore chip, it contains 621 million transistors and was fabricated by IBM using its 32nm CMOS technology. Cores operate at an average maximum clock frequency of 1.78 GHz, and they transfer data directly to each other r... » read more

Manufacturing Bits: June 7


Intel’s spintronic spectrometer Intel and Stanford University have presented the first results for a technology called a ferromagnetic resonance (FMR) spectrometer. Initially invented and developed by the National Institute of Standards and Technology (NIST), FMR examines the properties of materials for spintronic-based memories. Today’s DRAMs store binary data in tiny capacitors. I... » read more

System Bits: Sept.1


The quantum description of nature In quantum mechanics, the underlying physical rules that govern the fundamental behavior of matter and light at the atomic scale state that nothing can quite be completely at rest, but now for the first time, a team of researchers from Caltech, McGill University, and the Max Planck Institute for the Science of Light has found a way to observe—and control—t... » read more

Newer posts →