What’s Changing In DRAM


More data requires more processing and more storage, because that data needs to be stored somewhere. What’s changing is that it’s no longer just about SRAM and DRAM. Today, multiple types of DRAM are used in the same devices, each with its own set of tradeoffs. C.S. Lin, marketing executive at Winbond, talks about the potential problems that causes, including mismatches in latency, and high... » read more

CiM Integration For ML Inference Acceleration


A technical paper titled “WWW: What, When, Where to Compute-in-Memory” was published by researchers at Purdue University. Abstract: "Compute-in-memory (CiM) has emerged as a compelling solution to alleviate high data movement costs in von Neumann machines. CiM can perform massively parallel general matrix multiplication (GEMM) operations in memory, the dominant computation in Machine Lear... » read more

SRAM’s Role In Emerging Memories


Experts at the Table — Part 3: Semiconductor Engineering sat down to talk about AI, the latest issues in SRAM, and the potential impact of new types of memory, with Tony Chan Carusone, CTO at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be ... » read more

The Uncertain Future Of In-Memory Compute


Experts at the Table — Part 2: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, chief technology officer at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be found here and part 3 is h... » read more

SRAM In AI: The Future Of Memory


Experts at the Table — Part 1: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, CTO at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part two of this conversation can be found here and part three is here. [L-R]: ... » read more

Power/Performance Bits: May 6


Compressing objects Computer scientists at MIT propose a way to improve data compression in memory by focusing on objects rather than cache lines. "The motivation was trying to come up with a new memory hierarchy that could do object-based compression, instead of cache-line compression, because that's how most modern programming languages manage data," said Po-An Tsai, a graduate student at... » read more

Tech Talk: Data-Driven Design


Steven Woo, distinguished inventor at Rambus, talks about memory hierarchies and how they are changing as the amount of data continues to grow. https://youtu.be/4FwZ1YeQa18 » read more

New Memory Approaches And Issues


New memory types and approaches are being developed and tested as DRAM and Moore's Law both run out of steam, adding greatly to the confusion of what comes next and how that will affect chip designs. What fits where in the memory hierarchy is becoming less clear as the semiconductor industry grapples with these changes. New architectures, such as [getkc id="202" kc_name="fan-outs"] and [getk... » read more

Architecturally Optimizing Memory Bandwidth


Making sure that an SoC’s [getkc id="22" kc_name="memory"] bandwidth is optimized is a crucial part of the design process today given its significance toward overall system performance. There are many ways to approach this issue, and all of them can have a direct bearing on the competitiveness of a chip in terms of both power and performance. So where should you start? “Number one, c... » read more