Get Ready For Integrated Silicon Photonics


Long-haul communications and data centers are huge buyers of photonics components, and that is leading to rapid advances in the technology and opening new markets and opportunities. The industry has to adapt to meet the demands being placed on it and solve the bottlenecks in the design, development and fabrication of integrated silicon photonics. "Look at the networking bandwidth used across... » read more

Manufacturing Bits: April 3


World's brightest accelerator Japan’s High Energy Accelerator Research Organization (KEK) is readying what is considered the world’s most luminous or brightest particle accelerator. The system, dubbed the SuperKEKB, combines an electron-positron collider with a new and advanced detector. The storage ring system is designed to explore and measure rare decays of elementary particles, such... » read more

System Bits: March 27


New quantum electronic material has atomic structure resembling a Japanese basketweaving pattern According to MIT, Harvard University, and Lawrence Berkeley National Laboratory researchers, a motif of Japanese basketweaving known as the kagome pattern has preoccupied physicists for decades. They reminded that kagome baskets are typically made from strips of bamboo woven into a highly symmetric... » read more

System Bits: March 20


Design has consequences Carnegie Mellon University design students are exploring ways to enhance interactions with new technologies and the power of artificial intelligence. Assistant Professor Dan Lockton teaches the course, "Environments Studio IV: Designing Environments for Social Systems" in CMU's School of Design and leads the school's new Imaginaries Lab. “We want the designers of ... » read more

Non-Traditional Chips Gaining Steam


Flexible hybrid electronics are beginning to roll out in the form of medical devices, wearable electronics and even near-field communications tags in retail, setting the stage for a whole new wave of circuit design, manufacturing and packaging that reaches well beyond traditional chips. FHE devices begin with substrates made of ceramics, glass, plastic, polyimide, polymers, polysilicon, stai... » read more

System Bits: March 13


Wiring quantum computers According to MIT researchers, when we talk about “information technology,” we generally mean the technology part, like computers, networks, and software. But they reminded that the information itself, and its behavior in quantum systems, is a central focus for MIT’s interdisciplinary Quantum Engineering Group (QEG) as it seeks to develop quantum computing and oth... » read more

Power/Performance Bits: Mar. 6


Neural network chip Neural networks are both slow and consume a lot of power. This made researchers at MIT examine the important aspects of the nodes within a neural network and to see how each part of the computation could be improved. The outcome was a dedicated chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power c... » read more

Wireless Charging Creeps Forward


It's well known that electricity can travel long distances through the air, but expanding beyond the boundaries of a wire has never seemed a practical or reliable way to power delicate electronics. In fact, wireless power has been widely available for years. Whether this approach will be used to extend battery life isn't entirely clear. But it is attracting renewed attention as the balance b... » read more

Power/Performance Bits: Feb. 27


Encryption chip A team at MIT developed a new chip to lower the power consumption of public-key cryptography for IoT devices. Software execution of encryption protocols require more energy and memory space than embedded IoT sensors can typically spare, given the need to maximize battery life. The new chip is hardwired to perform public-key encryption and consumes only 1/400 as much power as... » read more

System Bits: Feb. 20


An evolution in electronics Restoring some semblance to those who have lost the sensation of touch has been a driving force behind Stanford University chemical engineer Zhenan Bao’s decades-long quest to create stretchable, electronically-sensitive synthetic materials. [caption id="attachment_24131783" align="aligncenter" width="300"] Zhenan Bao, the K.K. Lee professor of chemical engineer... » read more

← Older posts Newer posts →