Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

Can Nano-Patterning Save Moore’s Law?


For years the academic community has explored a novel technology called selective deposition. Then, more than a year ago, Intel spearheaded an effort to bring the technology from the lab to the fab at 7nm or 5nm. Today, selective deposition is still in R&D, but it is gaining momentum in the industry. With R&D funding from Intel and others, selective deposition, sometimes called ALD-e... » read more

New Patterning Paradigm?


Chip scaling is becoming more difficult at each process node, but the industry continues to find new and innovative ways to solve the problems at every turn. And so chipmakers continue to march down the various process nodes. But the question is for how much longer? In fact, at 16nm/14nm and beyond, chipmakers are finding new and different challenges, which, in turn, could slow IC scaling or br... » read more

More Lithography Options?


Lithographers face some tough decisions at 10nm and beyond. At these nodes, IC makers are still weighing the various patterning options. And to make it even more difficult, lithographers could soon have some new, and potentially disruptive, options on the table. On one front, the traditional next-generation lithography (NGL) technologies are finally making some noticeable progress. For examp... » read more