Review of Tools & Techniques for DL Edge Inference

A new technical paper titled "Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review" was published in "Proceedings of the IEEE" by researchers at University of Missouri and Texas Tech University. Abstract: Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted in breakthroughs in many areas. However, deploying thes... » read more

AI Chip Architectures Race To The Edge

As machine-learning apps start showing up in endpoint devices and along the network edge of the IoT, the accelerators that make AI possible may look more like FPGA and SoC modules than current data-center-bound chips from Intel or Nvidia. Artificial intelligence and machine learning need powerful chips for computing answers (inference) from large data sets (training). Most AI chips—both tr... » read more